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Abstract—The black hole firewall paradox, proposed by
Almbheiri, Marolf, Polchinski, and Sully, exposes a fundamen-
tal tension between the principles of quantum mechanics and
the classical description of black hole event horizons. In re-
sponse, Harlow and Hayden argued that limitations arising from
quantum computational complexity render the firewall paradox
thought experiment operationally unrealizable, thereby offering
a potential resolution of the paradox. This seminar paper is a
pedagogical review and synthesis of these ideas rather than a
presentation of new results, providing a clear and accessible
introduction to the firewall paradox and the Harlow-Hayden
complexity argument. The paper is aimed at readers with a
background in quantum computing but limited familiarity with
black hole physics.

Index Terms—Firewall Paradox, Quantum Computing, Black
Holes

I. INTRODUCTION

The firewall paradox, in black hole physics, emphasizes the
profound complexities and unresolved questions surrounding
the nature of black holes within the framework of quantum
gravity. This paradox arises from a tension between funda-
mental principles of quantum mechanics and the classical
understanding of black holes, which assumes that the event
horizon, the boundary separating the interior of a black hole
from the outside universe, is smooth and ordinary. In their
2012 paper by Almheiri, Marolf, Polchinski, and Sully [1],
henceforth referred to as AMPS, showed that under certain
reasonable assumptions about quantum theory, this smooth
horizon cannot coexist with the requirement that information
be preserved during black hole evaporation, leading to the
controversial suggestion that an observer falling into a black
hole would encounter a “firewall” of high-energy radiation,
rather than experiencing a smooth passage through the event
horizon.

Since its introduction, the AMPS argument has motivated
numerous attempts within the physics community to question
its conclusions or to find a way around them without abandon-
ing empirically well-established principles of quantum theory,
general relativity, or statistical thermodynamics. One such
attempt was proposed by Harlow and Hayden [2], hereafter
referred to as HH, who argue that limitations stemming from
quantum computational complexity prevent the AMPS thought
experiment from being operationally realizable, even in prin-
ciple. While the HH argument is well motivated from the per-
spective of quantum computational complexity, the authors of

AMPS responded with a counterargument in their subsequent
apologia [3], suggesting that the required computation could
instead be carried out in an auxiliary, decoupled quantum
system, thereby circumventing the relevant time-complexity
constraints.

This paper offers an exposition of the AMPS firewall para-
dox and the Harlow—Hayden complexity argument, tailored to
an audience familiar with quantum computation but new to
black hole theory. To accomplish this, the author has drawn
schematics and developed a Jupyter Notebook! containing
additional simulations and visualizations.

The paper begins with an introduction to black holes and
their quantum-mechanical description in Section II, provid-
ing the necessary foundation for understanding the AMPS
argument, which is presented in Section III. Section IV then
introduces and examines the HH proposal in detail, followed
by a discussion in Section V of the AMPS authors’ response
to the HH argument. Concluding remarks are presented in
Section VI.

II. DESCRIPTION OF A BLACK HOLE

This section gives a brief introduction to the structure of
black holes. It begins with general remarks, primarily based
on Ref. [4], to which the interested reader is referred for a
more detailed and formal description.

In general, a black hole is a region of the spacetime where
gravity is so strong that nothing, not even light, can escape its
gravitational pull. It is an extremely compact object that cannot
emit radiation from its surface and is therefore perceived
as black. The center of a black hole contains a spacetime

The Jupyter Notebook can be found here: https:/github.com/nairdanus/
QCvsFirewalls/blob/main/main.ipynb and will be referred to as the Notebook
for the remainder of this paper.



Fig. 1. Schematic illustration of a Schwarzschild black hole, indicating the
event horizon at r = 2G M, the photon sphere at r = 3G M, and the ISCO
at r = 6GM. The background image is based on a numerical simulation
provided by the ESA Advanced Concepts Team. Additional annotations and
illustrations were added by the author to improve clarity and accessibility.

singularity, where the classical description of spacetime breaks
down [5].

For simplicity reasons, this paper, following HH, focuses on
the simplest kind, the Schwarzschild black hole.* Tt describes
a non-rotating and electrically uncharged black hole and can
therefore be fully described by one single parameter, namely
its mass M.

The escape velocity, defined as the minimal speed required
for an object to escape the gravitational field of a celestial

body, is given by
2GM
Ve =\ 7 ey

where GG denotes Newton’s gravitational constant and M the
mass of the primary body. As light travels at a constant speed
¢, this implies the existence of a critical radius at which the
escape velocity equals c. This radius is given by

2GM
TH=—35""- 2

The surface defined by this radius is called the event horizon.
As nothing can escape from within it, the interior is causally
separated from the exterior region. Equation (2) applies specif-
ically for Schwarzschild black holes. For rotating black holes,
the event horizon has a smaller radius, depending on the
angular momentum.

Since G and c¢ in Equation (2) are constants, it is common
to adopt natural units in which ¢ = 1, yielding ry = 2GM,
or even ¢ = G = 1, yielding ry = 2M. The radial
coordinate used here is the Schwarzschild radial coordinate,
which measures the area of spheres centered on the singularity.
We follow the convention of HH and set ¢ = 1 throughout this
work while keeping G explicit. Consequently, the radius of the
event horizon will henceforth be written as rg = 2G M.

At a radius r = 3GM, just outside the event horizon,
lies the photon sphere of a Schwarzschild black hole [6]. At
this distance, gravity is strong enough that light can orbit the

C

2 Although HH formulate their argument primarily for Schwarzschild black
holes, they also extend their claims to more general black holes in Section 5
of Ref. [2].

black hole in circular paths. These orbits are unstable: small
disturbances cause photons either to fall inward and eventually
cross the event horizon, or to move outward and escape the
gravitational pull of the black hole. While photons do not
remain on these orbits indefinitely, the photon sphere strongly
influences how a black hole appears to a distant observer and
is responsible for the formation of a bright ring or halo around
the black hole.

Similar to the photon sphere, the innermost stable circular
orbit (ISCO) is the smallest radius at which a test particle
with negligible mass can orbit a black hole in a stable circular
trajectory. For a Schwarzschild black hole, the ISCO is located
at a radius r = 6G M. At smaller radii, circular orbits become
unstable, and particles inevitably spiral inward toward the
event horizon. The ISCO therefore marks the inner edge at
which matter can stably orbit the black hole.

The Heisenberg uncertainty principle implies that empty
space must contain small, temporary fluctuations in energy.?
These fluctuations can be described as the spontaneous cre-
ation and annihilation of entangled particle—antiparticle pairs
occurring on extremely short timescales. This continuous
process is known as quantum vacuum fluctuation.

Near the event horizon of a black hole, such quantum
fluctuations occur as well. However, the gravitational pull on
the particle closer to the event horizon is stronger than on its
partner, which is slightly farther away. As a result, the pair can
be separated before annihilation takes place. In this case, the
particle closer to the horizon falls into the black hole, while
the other escapes to infinity. The escaping particles become
real and constitute what is known as Hawking radiation, a
steady thermal radiation emitted by the black hole. [7]-[10]

Since this process effectively corresponds to the emission of
particles, it must lead to a loss of energy from the black hole.
Because the energy of a black hole is given by £ = Mc?, a
decrease in energy implies a decrease in mass. Over very long
timescales, this mechanism causes the black hole to gradually
lose mass and eventually evaporate.

As Hawking radiation is thermal, the event horizon of a
black hole can be treated as a thermodynamic system. This
observation leads to the conclusion that the area of the event
horizon is proportional to the entropy* of the black hole [8],
[11]. This means that as the black hole shrinks, its entropy
decreases, with the lost entropy being carried away by the
radiation it emits. When a black hole has radiated away more
than half of its initial entropy, it is referred to as an old black
hole. The time at which this happens is known as the Page
time.

III. THE FIREWALL PARADOX

The firewall paradox arises from a careful analysis of
the quantum properties of Hawking radiation and their im-
plications for the interior structure of an evaporating black

3The interested reader may find a detailed discussion of the underlying
reasoning in Ref. [7].

4In thermodynamics, entropy is a measure of the number of microscopic
configurations corresponding to a given macroscopic state, or equivalently, a
measure of the information inaccessible to a macroscopic observer.



hole. Building on the semiclassical description of black hole
evaporation reviewed in the previous section, the argument
highlights a tension between three seemingly reasonable as-
sumptions [3], [12]:

1) the unitarity of quantum mechanics, which also must
hold for the evaporation of the black hole

2) the validity of effective field theory’ outside the event
horizon, which states that the immediate outside must be
entangled with the immediate inside of the event horizon

3) the equivalence principle, and the resulting No Drama
postulate, which predicts that an infalling observer ex-
periences nothing unusual when crossing the horizon.

AMPS demonstrated that, for an old black hole these
assumptions cannot all be simultaneously satisfied. If infor-
mation is preserved in the Hawking radiation (1), late-time
radiation must be strongly entangled with the early radiation.
However, effective field theory near the horizon predicts that
the same late-time modes are also entangled with interior de-
grees of freedom (2). This apparent violation of the monogamy
of entanglement leads to the firewall paradox: the conclusion
that the smooth horizon must be replaced by a region of high-
energy excitations encountered by an infalling observer (3).

In the following, we outline the AMPS argument in detail,
inspired by Ref. [2], starting with a quantum mechanical
description of the interior and exterior of a black hole, each
of which will be accompanied by a schematic we have drawn,
visualizing the different modes (regions).

A. Outside the Black Hole

The evaporation process of a black hole can be described as
a time evolution in which, at any given time, there is a state
|¥) belonging to the Hilbert space Houtside associated with
degrees of freedom accessible to an external observer. This
Hilbert space can be factorized into three subfactors,

Houtside = Hir @ Hp @ Hr. (3)

The distinction of these subspaces is to some extent ar-
bitrary, but it is chosen by AMPS for convenience and
physical relevance. Hg is the mode of the radiation field
outside the black hole, roughly with Schwarzschild coordinates
r > 3G M. In principle, this space would be infinitely large;
however, in this work it is restricted to the subset of radiation
degrees of freedom that still participate in the black hole
dynamics. Hp contains the effective field theory modes just
outside the event horizon, spanning approximately the region
2GM + e < r < 3GM, with € denoting an extremely small
distance from the event horizon and serves as a UV cutoff®.
‘Hp comprises the remaining degrees of freedom and can be
thought of being the stretched horizon at r = 2GM + e.

3 An effective field theory is a simplifying description of physics that works
at chosen scales (e.g., those observable to humans) without the need to
know the details of much smaller or higher-energy phenomena (e.g., quantum
effects).

®A UV (ultraviolet) cutoff describes a short-distance / high-energy limit
beyond which a theory is no longer trusted.

Fig. 2. Schematic illustration of the decomposition of a black hole into
different quantum modes (Hilbert spaces) in the AMPS thought experiment,
as seen from the perspective of an outside observer.

We call the dimensions of these Hilbert spaces dim(Hpy) =
|H|, dim(Hp) = |B|, and dim(Hg) = |R|. At the time ¢ at
which the state |¥) is considered, both log, |H| and log, | B|
are proportional to the entropy of the black hole and are
therefore also proportional to the area of the event horizon.”
As the black hole evaporates and loses mass, its entropy
decreases, implying that | H | and | B| decrease over time, while
|R| increases as radiation accumulates. This observation leads
to this natural distinction between young and old black holes:

young black hole: |R| < |H||B|,
Page time: |R| = |H||B]|, “4)
old black hole: |R| > |H||B|.

At sufficiently late times, when the black hole is old,
|R| > |H||B| > 1 holds. In this regime, Page’s theorem [13]
applies, which states that for a generic pure state of a large
quantum system, any sufficiently small subsystem is almost
maximally entangled with the remainder of the system and is
itself nearly maximally mixed. Applied to the description from
Equation (3), this implies that the combined subsystem H DB
must be almost maximally entangled with a suitable subspace
of the radiation R. Consequently, there is a time-dependent
decomposition of Hp into the subspace being entangled with
Hr and the one being entangled with Hp:

HR = (HRH 2y HRs) S2) Hothery (5)

where |Ry| = |H| and |Rg| = |B|. The full quantum state
of the exterior degrees of freedom can then be written as

1 1
Uy = [ —— h) . |h —_— b)Y |b ,
0=\ 2 M W | @ | g 10| >RB(6)

where h and b label orthonormal bases of Hy and Hp,
respectively. The subsystems Ry and Rp are referred to as
the purifications of H and B. This structure makes explicit
that any measurement performed on B is perfectly correlated
with a corresponding measurement on Rp.

7The maximal entropy of a quantum system is given by the natural
logarithm of the dimension of its Hilbert space. From a quantum-computation
perspective, this is analogous to the fact that n qubits span a Hilbert space
of dimension 2™.



Fig. 3. Schematic illustration of the Hilbert-space decomposition of a black
hole in the AMPS thought experiment from the viewpoint of an infalling
observer.

B. Inside the Black Hole

If we accept the No Drama postulate, an infalling observer,
Alice, can cross the event horizon without experiencing any-
thing unusual. In this subsection, we examine the quantum de-
scription of the black hole from Alice’s perspective. Although
Alice will eventually reach the singularity, it should still be
possible for her to get a quantum mechanical description of
her immediate surroundings.

Once Alice has passed the horizon, she gains access to a
new region of spacetime that is invisible to an outside observer.
However, she still retains access to the exterior region, as the
horizon is a one-way causal barrier. The Hilbert space from
Alice’s viewpoint H;,si4e can be factorized as:

Hinside = Hi @ Ha @ Hp @ Hrg. (7

Here, Hp and Hp correspond to modes shared with the
outside observer, since both regions are causally accessible.
Ha contains the effective field theory modes just inside
the horizon, roughly over GM < r < 2GM — e. Hpy
represents the remaining degrees of freedom associated with
Alice’s local horizon®, which are not crucial for the AMPS
argument. The modes of the global horizon Hyz were omit-
ted in this description, as Alice passes through the region
2GM — € < r < 2GM + € in an extremely short period
of time, making it operationally irrelevant.

According to No Drama, Alice expects the regions A and B
to form a continuous space across the horizon. In the vacuum
of Minkowski space’ two nearby regions are connected if
the corresponding modes are nearly maximally entangled.
Therefore, for Alice to experience a smooth horizon, H 4 must
be nearly maximally entangled with Hp.

Since both Alice and an outside observer have access to
‘Hp and Hpg, they must agree on the state in this combined
subspace. As shown in Subsection III-A, Hp is maximally

8 Alice’s horizon differs from the global event horizon because she has
crossed the global causal boundary of the black hole, yet remains causally
disconnected from regions closer to the singularity.

9Minkowski space is a four-dimensional mathematical spacetime that
combines three dimensions of space and one of time into a single framework
used to describe special relativity.

entangled with a subspace of the radiation, g, , which must
hold from Alice’s perspective as well.

In quantum mechanics, perfect correlations cannot be freely
shared. If a quantum system A is perfectly correlated to system
B, namely if they are maximally entangled, then it cannot be
entangled to a third system C'. [14] This restriction is known
as the monogamy of entanglement.

Here lies the core of the paradox. The No Drama assumption
requires A to be maximally entangled with B, while the
outside description requires B to be maximally entangled with
Rp. Both cannot be true simultaneously, due to monogamy of
entanglement. To resolve this contradiction, AMPS proposed
that the entanglement between A and B must not exist. This
leads to a “firewall” of high-energy quanta at the horizon,
which would destroy any infalling observer attempting to cross
1t.

C. The Firewall paradox as a Quantum Computation

We now reformulate the Hilbert-space structure of the black
hole in terms of a finite number of qubits. This perspective
is essential for the computational complexity arguments dis-
cussed in Section IV.

Following HH, we introduce a computational basis for the
radiation field of the form

|bhr>R:|b1---bk7h1---hm7rl-~-rn—k—m>R- (8)

where k = log, | B| is the number of qubits corresponding to
the Hilbert space Hp, m = log, |H| is the number of qubits
corresponding to Hy, and n = log, |R| is the total number
of qubits in H . The qubits r; are early Hawking radiation
emitted before Page time and will play no significant role in
the following discussion. The qubits b; and h; correspond to
the subspaces Hpr, and Hp, and are the purifications of the
modes B and H respectively.

Including the degrees of freedom associated with the black
hole, and using the fact that BH is entangled with a subspace
of the radiation R, the full quantum state of the system can
be written as

| ) > 1b) g 1)y Ur [bhO) ;. )

_ 1
VIBIH] £

Here, the qubits r; have been set to zero for simplicity, as
they correspond to the irrelevant subspace Hopmer introduced
in Equation (5). Ur denotes some complicated unitary trans-
formation acting on H g, representing the scrambling of quanta
carried by the Hawking radiation. Its precise form depends on
the details of quantum gravity as well as on the initial state
of the black hole.

In order to verify the entanglement between Hp and its
purification ‘Hp,, Alice would need to identify and apply
the inverse unitary UIT% to the Hawking radiation. Doing so
would allow her to extract the subsystem H g, from the full
Hawking radiation Hilbert space H . This task can be seen
as a decoding operation and can be performed on a quantum
computer. This is visualized in the first part of the Notebook.



IV. QC vs. FIREWALLS

In this section, we present the HH argument, which analyzes
the computational complexity of the quantum task that an
infalling observer, Alice, would need to perform in order to test
for the presence of a firewall. HH argue that the time required
to carry out this quantum computation exceeds the remaining
lifetime of the black hole. Consequently, although the rele-
vant information may exist in principle within the Hawking
radiation, it cannot be extracted in practice. The entanglement
between the near-horizon modes and the radiation can never
be operationally verified, thereby removing the necessity of
introducing firewalls.

The Schwarzschild black hole with mass M has an entropy
proportional to M? and evaporates in a time proportional to
M3. So M? would be the maximal amount of time Alice has
to extract the needed information from the radiation.

Subsection IV-A introduces the complexity argument in a
more formal way by discussing some fundamental limitations.
Subsequently, Subsection IV-B presents a more standard and
intuitive formulation of the argument, expressed in terms of
quantum circuits and gate decompositions familiar to people
with a background in quantum computing.

A. Computation via Natural Unitary Evolution

Suppose Alice has access to a quantum computer of arbi-
trarily large size, described by a Hilbert space H. She may
then couple this quantum computer to the Hawking radiation
and allow the combined system Hpr ® Hc to evolve under
its natural unitary time evolution, denoted by Ucomp. The goal
of this evolution is to decode the radiation and extract the
subsystem Hp,,.

To achieve this, Alice must carefully choose an initial state
|¥), of her quantum computer such that the joint system
evolves as

Ucomp : Ur |bh0) p @ |¥) + |something) ® |b) (10)

mem

for all b and h. In this way, the information contained in the
subsystem Rp is separated from the remaining degrees of
freedom and stored in a designated memory register of the
quantum computer.

The central challenge for Alice is therefore to determine an
initial state |¥) ., that achieves this decoding. Since the group
of unitary transformations is continuous, an exact realization
of this is physically not achievable. Instead, it suffices for Alice
to approximate the desired initial state within some small error
€, measured using the frace norm. For an operator A, the trace
norm is defined as

1]l = Tr(VATA). an

Accordingly, Alice only needs to find a state |¥’) such that
[1([9) (B = @) (W[ < e (12)

To estimate the difficulty of this task, HH computed the
probability that a randomly chosen initial state of the quantum

Global Phase: 4.95694134704346

Fig. 4. Example of a gate decomposition of a random unitary transformation
acting on two qubits.

computer lies within trace-norm distance ¢ of a suitable
decoding state. They found this probability to be

9\ ~2ICI(RI2™ (2" =1)-1)
r=(2) .

The interested reader is referred to Section 3.1 of Ref. [2]
for the detailed derivation. For large values of k, m, and |C|,
this probability becomes astronomically small. Consequently,
the expected time required for Alice to find an adequate
approximation to |¥). by chance is extraordinarily large.
Notably, increasing the size of the quantum computer only
exacerbates this problem.

This approach can be viewed as the most naive decoding
strategy available to Alice. She effectively waits for the
system to evolve close to the desired state through its natural
dynamics. The time this takes can be interpreted as the
quantum recurrence time, which characterizes how long it
takes for a quantum system to return arbitrarily close to a given
state. In the next subsection, we discuss how Alice improves
upon this naive strategy by performing a structured quantum
computation.

13)

B. Computation via Gate Decomposition

We now discuss how Alice might attempt to decode the
scrambled radiation by explicitly implementing the decoding
operator U}T{, the inverse of Up from Equation (9). For
simplicity, we assume that U;i acts on the entire radiation
Hilbert space Hr. In Appendix A we show that it is sufficient
for UIT% to act only on a subspace of dimension k& + m, and
that this restriction does not affect the arguments that follow.

We take Ugr to be a generic, highly scrambled unitary
transformation without any special structure. Given the chaotic
dynamics governing black hole evaporation, it would be sur-
prising if the radiation scrambling resulted in a simple or
efficiently describable unitary.

In the gate model of quantum computation, a quantum
computer implements unitary transformations by applying a
sequence of elementary quantum gates. A set of gates is called
universal if it can implement any unitary transformation. A
standard example of a universal gate set is {CNOT, H,T'}. It
is physically unrealistic to assume that a quantum computer
can directly implement an arbitrary multi-qubit unitary in a
single step. Instead, Alice must decompose U }T% into a sequence
of gates drawn from her universal gate set.

The time complexity of the decoding task can therefore
be identified with the number of quantum gates that must
be applied sequentially in this decomposition. We make the
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Fig. 5. Circuit depth (on a logarithmic scale) obtained when decomposing
random unitary transformations using Quantum Shannon Decomposition,
starting from three qubits. As a reference, the curve O(22") is shown.

extremely optimistic assumption, that Alice possesses a quan-
tum computer capable of implementing arbitrary single-qubit
unitaries. There, any multi-qubit unitary can be decomposed
into arbitrary one-qubit gates and two-qubit CNOT gates. This
decomposition is schematically illustrated in Figure 4.

In the second part of the Notebook we analyzed the com-
plexity of decomposing random unitaries using the Python
library giskit [15] (version 2.2.3). For systems of more
than two qubits, giskit implements unitary synthesis via
the Quantum Shannon Decomposition (QSD) [16]. The QSD
algorithm has an asymptotic gate complexity given by

23 , 3., 4
f(n)—484 22 —|—3.
which clearly lies in the complexity class O(4™) = O(2%").

Our numerical results confirm this scaling behavior. As
shown in Figure 5, the circuit depth, defined as the minimum
number of layers in which gates can be applied in parallel,
approaches O(22") for increasing numbers of qubits. This
must be especially the case for black hole radiation, where
the number of qubits is extremely large.

Since the number of qubits required to describe the radiation
is proportional to the black hole entropy, which itself scales as
S ~ M? (in Planck units), we may express the total decoding
time as a function of the black hole mass:

(14)

tdecoding ~ 22n = 22A{2- (15)

As a result, even under the most optimistic assumptions,
namely, that Alice possesses an extraordinarily powerful quan-
tum computer capable of performing arbitrary single-qubit
operations, and that each gate can be applied in the minimum
physically allowed time (on the order of the Planck time), the
total decoding time vastly exceeds the black hole evaporation
time, which scales only polynomially as teva, ~ M 3. Conse-
quently, Alice cannot complete the decoding before the black
hole evaporates, rendering any direct experimental verification
of the firewall paradox impossible.

V. THE AMPS APOLOGIA

In their apologia [3], AMPS respond to several attempts
to circumvent the firewall paradox, including the proposal
by HH. Their counterargument addresses HH’s claim that
computational complexity fundamentally prevents an infalling
observer from decoding the purification of a late Hawking
mode. Importantly, AMPS do not dispute the decoding re-
quirements or the exponential growth of complexity; instead,
they argue that complexity alone does not make the experiment
impossible in principle.

The central idea is that the infalling observer does not
need to perform the decoding directly. One can introduce an
auxiliary quantum system (AUX), entangled with the black
hole and its early radiation, and execute the entire decoding
unitary within AUX. The observer then receives only the
purification of the late mode b, without having to carry
out the computation themselves. This construction separates
the computational cost, borne entirely by AUX, from the
observer’s experience, which is constrained by proper time.

AMPS assume that the Hamiltonian of AUX can, in prin-
ciple, be rescaled arbitrarily:

Haux — T(t)HAUx, T(t) > 1.

In standard quantum mechanics, rescaling the Hamiltonian
proportionally rescales the rate of time evolution. Conse-
quently, a computation that would ordinarily take time 7T
can be completed in time 7'/Y, allowing any finite quantum
computation to be executed in arbitrarily short coordinate time.
This shows that circuit complexity does not impose an in-
principle lower bound on the time required for the decoding.

The disagreement between HH and AMPS is therefore
conceptual rather than mathematical. HH argue that high cir-
cuit complexity renders the experiment physically impossible
under reasonable assumptions of bounded energy, locality,
and observer-centered dynamics. AMPS counter that the com-
bination of Hamiltonian rescaling, externalized computation,
and the flexibility provided by AdS/CFT!® removes any in-
principle obstruction. The debate thus hinges on the physical
interpretation of complexity bounds rather than their formal
existence.

VI. CONCLUSION

In this paper, we examined the firewall paradox and its
reformulation in terms of quantum information and compu-
tation. The paradox arises from a clash between unitary black
hole evaporation, the validity of effective field theory near
the horizon, and the expectation that an infalling observer
experiences no drama at the event horizon. After the Page
time, these assumptions lead to incompatible requirements on
the entanglement of near-horizon modes, giving rise to the
firewall problem.

10AdS/CFT is a duality between a gravitational theory in Anti-de Sitter
(AdS) space and a Conformal Field Theory (CFT). In simple terms, it states
that all physics in the AdS “bulk” can be exactly described by a lower-
dimensional quantum theory on its boundary. The interested reader is referred
to [17].



By expressing the AMPS setup using finite-dimensional
Hilbert spaces and qubits, we showed that verifying the
presence of a firewall amounts to a concrete decoding task
on the Hawking radiation. While the required correlations
formally exist, extracting them requires undoing an extremely
complex scrambling process.

Following Harlow and Hayden, we argued that this decoding
task is computationally infeasible. Any realistic attempt to
recover the relevant entanglement would take a time exponen-
tial in the black hole entropy, far exceeding the black hole’s
evaporation time. As a result, no observer can operationally
confirm the entanglement structure that leads to the firewall
paradox before the black hole disappears.

From this perspective, the paradox is not resolved by
modifying the principles of quantum mechanics or general
relativity, but by recognizing the fundamental limits imposed
by computation.

Whether computational complexity truly determines which
aspects of quantum information are physically accessible in
quantum gravity remains debated. Almheiri, Marolf, Polchin-
ski, Stanford, and Sully argue that, in principle, complexity
does not impose a constraint: the computation could be per-
formed on an auxiliary quantum system whose time evolution
can be arbitrarily accelerated.

Ultimately, we believe that the answer to the question if HH
posed a solution to the firewall paradox and how the firewall
paradox can be resolved altogether runs as deep as finding the
right theory describing relativity, and quantum gravity.
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APPENDIX A

n k+m
REDUCTION FROM C2" 10 C2

A closer look at Equation (9) shows that the unitary Ug is
effectively defined only on the subspace

gk+m
Hrelevant ~C - HR'

This subspace is spanned by states of the form |bh0), where
the k 4+ m qubits corresponding to b and h can vary freely,
while the remaining n — (k + m) qubits of the radiation are
fixed in a reference state, which we denote by |0).

From a computational perspective, specifying Ur amounts
to choosing the image of each of the 28*™ basis states |bh0)
within the full 2"-dimensional Hilbert space. Each output basis
vector is a vector in C2", so specifying all of them requires
on the order of 2¥+™*" independent parameters. Since we
are considering an old black hole, we have n > k + m,
which implies that the number of parameters is at least of
order 22(k+m),

This observation allows us to refine the estimate of the
decoding time from Equation (15):

tdecoding ~ 22(k+m).

Even with this restriction to the smaller, relevant subspace, the
decoding complexity remains double exponential in the size
of the subsystem BH, which itself scales with the black hole
mass. Consequently, the decoding time is still vastly larger
than the black hole evaporation time:

tdecoding > tevap .
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Abstract—The AlphaTensor-Quantum (ATQ) [1] [2] [3] frame-
work represents a paradigm shift in quantum circuit compilation,
utilizing deep reinforcement learning to minimize the T-count
of fault-tolerant quantum circuits. ATQ reformulates the opti-
mization problem as a “TensorGame”, where the objective is
to find low-rank decompositions of a symmetric tensor repre-
senting the circuit’s Non-Clifford components. By incorporating
domain knowledge through ‘“gadgets”, known subcircuits like
Toffoli gates that utilize ancillae for T-count reductions, and
leveraging symmetrized axial attention for neural policy scaling,
ATQ achieves state-of-the-art results, including the discovery
of Karatsuba-like multiplication structures. However, to handle
circuits exceeding the size of its signature tensor, ATQ cur-
rently employs a structure-agnostic, random-greedy partition-
ing heuristic. This study argues that such random partition-
ing inadvertently severs the local gate structures essential for
gadget recognition, limiting efficacy in optimizing large-scale
circuits. We propose and evaluate a structure-preserving partition
methodology utilizing interaction Graphs and Multilevel k-way
Partitioning (METIS) Algorithm. By mapping quantum circuits
to weighted graphs where edge weights reflect non-Clifford
interaction strengths, we demonstrate that structural partitioning
significantly improves ‘“Gadget Survival”, the preservation of
Toffoli structures within optimization windows. Comparative
analysis using PyZX as a proxy optimizer on complex arithmetic
benchmarks, such as Galois Field multipliers, confirms that this
topological approach outperforms random baselines in modular
arithmetic circuits, though we identify a saturation point in
dense ‘hairball’ topologies where structural preservation yields
diminishing results '.

Index Terms—Quantum circuit optimization, T-count reduc-
tion, reinforcement learning, graph partitioning, PyZX

I. INTRODUCTION

Fault-tolerant quantum computing (FTQC) relies on error-
correcting codes, such as the surface code, where Clif-
ford Gates (H, S, CNOT) are transversally implementable and
resource-efficient. However, universality requires the non-
Clifford T-gate (R, (m/4)), which demands costly magic state
distillation. Estimates suggest a single T-gate consumes two
orders of magnitude more spacetime volume than a CNOT
[4]. Consequently, minimizing the “T-count” is the primary
optimization objective for FTQC compilers.

Recent work has reformulated T-count minimization as a
tensor decomposition problem [5]. The AlphaTensor-Quantum

IData, code, and results are available at https:/github.com/sarthak 1682/
SemQC

(ATQ) framework represents the non-Clifford component of
a circuit as a symmetric tensor 7, where the tensor rank
corresponds exactly to the T-count. ATQ employs deep re-
inforcement learning to play a “TensorGame”, decomposing
T into rank-1 factors. Crucially, the agent is rewarded for
identifying “gadgets”, which are specific patterns of factors
corresponding to efficient subcircuits (e.g., Toffoli gates) that
allow for lower-cost implementations using ancillae.

Despite its success, ATQ faces a scalability bottleneck. The
signature tensor scales cubically with qubit count (NV), limiting
direct optimization to N = 60. For larger circuits, ATQ
employs a random-greedy partitioning strategy to slice the
circuit into manageable sub-blocks. This approach is topologi-
cally blind. Quantum circuits often exhibit “hairball” structures
with dense local algebraic dependencies. Random partitioning
risks severing these dependencies, effectively breaking the
gadgets across partition boundaries and preventing the local
optimizer from recognizing them.

This study proposes a structure-preserving partitioning
methodology to address this limitation. We hypothesize that
mapping circuits to weighted Interaction Graphs and ap-
plying the Multilevel k-way Partitioning (METIS) algorithm
will preserve gadget integrity, which would help the Tensor
Decomposition with RL-Agent. By penalizing cuts through
dense non-Clifford interactions, we aim to present the local
optimizer with topologically coherent sub-circuits. We validate
this approach using PyZX as a proxy optimizer on arithmetic
benchmarks, demonstrating that structure-preserving partition-
ing improves “Gadget Survival”’ and reduces final T-count
compared to the random baseline.

II. THEORETICAL BACKGROUND

A. Tensor Representation and Gadgetization

The mathematical foundation of AlphaTensor-Quantum
(ATQ) lies in mapping the non-Clifford portion of a circuit
to a symmetric tensor. A circuit on N qubits is represented
by a binary signature tensor 7~ € {0, 1}V *N*N derived from
the degree-3 phase polynomial of the circuit’'s CNOT + T
component [5]. The T-count of the circuit is equivalent to the
symmetric rank of this tensor. Optimization is thus reframed



as finding a minimal decomposition:
R
T= Z u™ @u @ uM
r=1

where each rank-1 term u(") corresponds to a single T-gate (a
parity phase).

Crucially, standard T-count minimization is insufficient for
optimal fault tolerance. Gadgets, as introduced above, allow
for compressed implementations. For example, a Toffoli gate
(conceptually 7 T-gates) can be realized with a cost of ~ 2
T-gates using catalyzed distillation and relative phase con-
structions. ATQ incentivizes the discovery of these structures
by adjusting the reward function: if a sequence of rank-
1 factors u(") sums to a gadget signature (e.g., a Toffoli),
the effective cost is retroactively lowered. This creates a
dependency: the optimizer must see all components of the
gadget simultaneously to trigger the reward

B. AlphaTensor-Quantum (ATQ) Architecture

ATQ solves the decomposition problem via a single-player
reinforcement learning game, namely the TensorGame. The
agent uses a neural network with symmetrized axial at-
tention, which enforces permutation invariance by averaging
attention mechanisms across tensor modes. This symmetry-
aware architecture allows the agent to generalize across qubit
indices and scale to tensors of size N ~ 60. However, beyond
this limit, the O(N?3) tensor size and 2%V action space become
computationally prohibitive, necessitating circuit partitioning.

C. Graph Partitioning Algorithms

Partitioning breaks a large graph G = (V, E)) into k blocks
while minimizing the edge cut.

o Kernighan-Lin (KL): An iterative refinement heuristic
that swaps nodes between partitions to strictly minimize
cuts. It is effective locally but prone to getting trapped in
local minima [6].

« METIS (Multilevel Partitioning): The standard for han-
dling large, complex graphs. METIS employs a three-
phase approach: (1) Coarsening, merging nodes to pre-
serve global structure; (2) Imitial Partitioning on the
coarsest graph; and (3) Uncoarsening, projecting the
partition back with refinement [7]. Its ability to identify
“communities” in dense graphs makes it theoretically
superior to random partitioning for preserving the local
algebraic dependencies found in quantum arithmetic cir-
cuits.

III. RELATED WORK

A. Classical Optimization: Rewriting and Phase Polynomials

Traditional compilers rely on two primary strategies. Rule-
based rewriting employs local template matching (e.g., iden-
tifying identity sequences like 77" = I or circuit identities)
to cancel adjacent gates [8]. While fast, these methods are
trapped by local optima.
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A more global approach is Phase Polynomial Synthesis
(used by T-par, TODD [5], and PyZX [9]). These algorithms
map the circuit to a phase polynomial representation:

Optimization is performed by rewriting this polynomial to
minimize terms before re-synthesizing the circuit. While scal-
able, these algebraic heuristics often struggle with complex
“hairball” topologies and lack the ability to plan long-term
restructuring moves [8].

B. Machine Learning and ATQ

AlphaTensor-Quantum (ATQ) pioneered the use of Deep
Reinforcement Learning (DeepRL) for T-count reduction by
reframing the problem as a tensor decomposition game. In
benchmarks, ATQ consistently outperforms classical phase-
polynomial solvers, demonstrating that the computational cost
of Deep RL pays off for complex circuits. However, the
original ATQ framework required training separate agents for
each circuit size and relied on random partitioning for large
instances, a limitation which this report aims to address.

C. Recent Developments

This subsection summarizes the relevant subsequent re-
search post the Nature-publication in March of 2025.

o Generalization (Zen et al., 2025): Addressing the train-
ing specificity of ATQ, Zen et al. trained a single “general
agent” on random circuits (5-8 qubits). By combining
supervised pretraining with RL finetuning, they achieved
lower T-counts on unseen circuits than fixed-size agents,
suggesting that ATQ-style models can be made portable
[10].

o Gadgets in RL (Olle et al., 2025): Olle et al. demon-
strated that providing an RL agent with access to compos-
ite gates (“‘gadgets”) dramatically accelerates learning in
Quantum Error Correction code discovery [11]. Although
their domain differs, this result strongly supports the
core premise of ATQ and this work: that preserving
and exploiting gadget structures is essential for scaling
quantum design.

« RL via ZX-Calculus (Riu et al., 2025): Riu et al. pro-
posed an RL optimizer that uses Graph Neural Networks
(GNNs) to apply ZX-diagram rewrite rules. Their agent,
trained on small 5-qubit circuits, generalized to 80-qubit
instances, outperforming hand-coded ZX algorithms [12].
This confirms that graph-theoretic representations (like
the Interaction Graphs used in this work) are robust for
learning.

o Algebraic Frameworks (Chen et al.,, 2025; Kremer
et al., 2025): New tensor-based frameworks continue to
emerge. The “PhasePoly” library [13] optimizes parity
functions systematically, achieving ~50% gate reduc-
tions in QAOA circuits. Simultaneously, Kremer et al.
[14] applied Deep RL to exact unitary synthesis, de-
riving linear-complexity algorithms for primitives like
controlled cyclic shifts.
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While these advances improve the local optimization capa-
bility (the “agent”), they do not solve the global partitioning
problem for massive circuits. Our work complements these
studies by ensuring that the sub-circuits fed into these ad-
vanced optimizers retain the structural integrity required for
them to function effectively.

IV. METHODOLOGY

To address the scalability limitations of random partitioning
in AlphaTensor-Quantum (ATQ), we introduce a structure-
preserving partitioning layer 2. This framework precedes the
optimization phase, ensuring that the sub-circuits presented to
the local optimizer retain the topological features required for
gadget discovery.

A. Interaction Graph Construction

We define the circuit topology as a weighted interaction
graph Giy = (V, E, W).

1) Node Definition via Gate Fusion: A naive mapping
of every quantum gate to a node yields sparse, un-
informative graphs dominated by single-qubit Clifford
operations. To resolve this, we employ Gate Fusion: lin-
ear sequences of single-qubit Clifford gates (H, S, X, Z)
are fused into the preceding or succeeding non-Clifford
gate. Consequently, the vertex set V' represents only the
active non-Clifford resources (T-gates) and entangling
operations (CNQOTs, CZs) that form the signature tensor.
Undirected Topology: While quantum circuits are Di-
rected Acyclic Graphs (DAGs), gadget dependencies are
often bidirectional (e.g., phase polynomial cancellation).
We treat edges as undirected during partitioning to
minimize the total cut weight, resolving directionality
via ancilla insertion during the reconstruction phase.

2)

2All circuits were taken from the Feynman Benchmark Repository https:
//github.com/meamy/feynman/tree/master
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B. Topological Weighting Scheme

The core innovation of this framework is a Gadget-Centric
Weighting Scheme designed to differentiate between trivial
wire crossings and essential algebraic bonds. We classify edges
into two distinct categories:

1) Temporal Edges (wemp = 1.0): These edges represent
the time-evolution of a single qubit between gates.
Cutting a temporal edge incurs a linear cost (state
preparation and measurement) but rarely destroys an
optimization opportunity, as the state is simply passed
between partitions.

Gadget Bonds (wpong = 2.0): These edges represent
dense algebraic dependencies, specifically the multi-
qubit interactions within Toffoli (CCZ). In the ATQ
framework, these would correspond to degree-3 terms
in the phase polynomial. Severing such a bond destroys
the information required for the agent to recognize the
gadget. By assigning a higher weight to these edges, we
mathematically bias the partitioner to find cuts that pass
through the “sparse” regions of the circuit, such as the
wires connecting distinct arithmetic modules, rather than
through the dense logic of the operations themselves.

2)

C. Fartitioning Algorithms

We evaluate two distinct partitioning regimes to isolate the

impact of topology:

« Baseline: Stochastic Random-Greedy: Replicating the
ATQ heuristic [1] (Appendix C.2), this method views the
circuit as a linear sequence of gate blocks. It employs a
randomized interval merging strategy: adjacent blocks are
iteratively merged in a random order until adding another
block would exceed the qubit limit N,,x. To ensure statis-
tical rigor and account for randomness in the partitioning
algorithm, we implement a Monte Carlo baseline. For
each circuit, we execute N = 1000 independent trials



and select the best result, defined as the partition with the
minimum edge-cut. By reporting the best performance
across 1,000 randomized attempts rather than a simple
average, we establish a strong lower bound that gives the
topology-agnostic approach its best possible chance to
succeed. This establishes a lower bound for performance
in a “topologically blind” regime.

o Proposed: Spectral Partitioning (METIS): We apply
the Multilevel k-way Partitioning algorithm (METIS) to
the weighted graph Gj,.. METIS operates by coarsening
the graph to identify spectral communities (clusters of
high algebraic connectivity) before refining the cut. Given
our weighting scheme (Wyond > Wiemp), METIS is coerced
into maximizing the Gadget Survival Rate (GSR).
While this topological principle applies to any dense
non-Clifford subgraph (including Controlled-S or CS
gadgets), for the purpose of this evaluation, we define
GSR specifically as the fraction of Toffoli gadgets (7x T-
gate clusters) that remain fully contained within a single
partition, as these represent the dominant optimization
target in arithmetic benchmarks.

D. Validation Pipeline & Computational Bounds

To quantify the utility of the partitions, we utilize PyZX
as a deterministic proxy for the ATQ agent. PyZX employs
Phase Teleportation, a rewrite rule mathematically analogous
to finding low-rank tensor decompositions.

The Proxy Hypothesis: While PyZX lacks the exploratory
power of Deep RL, it establishes a rigorous lower bound.
If a partition cut physically severs the T-gates comprising a
gadget, the linear dependency is destroyed, and neither PyZX
nor ATQ can optimize it. Therefore, structural preservation can

A. Structural Analysis: The Hairball vs. The Module

The primary hypothesis of this work is that random par-
titioning severs the local algebraic structures required for
optimization. Our analysis reveals two distinct topological
regimes:

o The Modular Regime (Arithmetic Circuits): Cir-
cuits such as adders and Hamming weight coun-
ters exhibit strong local community structure. For
mod_adder_1024, the random baseline yields a GSR
of only ~ 1.4%, implying that nearly all optimization
targets are split across partition boundaries. In contrast,
METIS recovers ~ 94.7% of gadgets.

o The Diffusive Regime (Multipliers): High-diffusion
circuits like GF(2128) exhibit “hairball” expansion prop-
erties. Despite this density, the weighted spectral parti-
tioning of METIS successfully identifies non-trivial cuts,
achieving > 90% survival where Random partitioning
consistently fails (0%).

A cursory sensitivity analysis reveals that the partition
quality is robust to variations in gadget bond weights (Wpong €
[1.0,10.0]), confirming that the Interaction Graph topology
itself, rather than fine-tuned edge weights, is the primary
determinant of gadget preservation. See V for more details.

Table I quantifies the partition quality for representative
large-scale benchmarks. We evaluate partition quality using
two metrics: Gadget Survival Rate (GSR) and Edge Cut Ratio.
Table I compares METIS against the best of 1,000 random
trials on representative large-scale benchmarks.

TABLE I
PARTITION QUALITY ON LARGE CIRCUITS

be expected to yield improvements in PyZX T-count reduction, ~ Benchmark Qubits Gadget Survival Cut Ratio
and we argue it’d also thus be beneficial as input to the ATQ (Higher is Better) (Lower is Better)
RL-Agent. Random (Max) ~METIS  Random  METIS
Computational Intractability: The optimization complex- GF(2128)-mult 384 0.0% 94.3% 85.4% 0.8%
ity grows cubically (O(N?3)) with qubit count, and the action ~ GF(2*°°)-mult 768 0.0% 96.0%  922%  0.5%
: N ModAdd-1024 28 4.9% 94.7% 47.5% 0.8%
space scales exponentially (2"V). Consequently, for bench- el 20 18% 1000%  497% 01%

marks exceeding 100 qubits (e.g., GF(2!28)), full re-synthesis
is computationally intractable within standard experimental
timeframes. For these High-Qubit regimes, we report Gadget
Survival Rate (GSR) as the primary metric, while restricting
full T-count validation to the tractable regime (N < 100), such
as gf2"32_mult and mod_adder_1024.

V. EXPERIMENTAL RESULTS

We evaluate the efficacy of Structure-Preserving Partitioning
by comparing the baseline Random-Greedy approach against
the proposed METIS-Weighted strategy. Experiments were
conducted on the benchmark suite defined in the original ATQ
paper, using Gadget Survival Rate (GSR) as the primary metric
for scalability and PyZX T-count reduction as the metric for
utility. For the PyZX utility benchmarks, we utilized binary
partitioning (k = 2) to strictly isolate the impact of a single
cut on local optimization potential.
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B. T-Count Optimization

To confirm that high Gadget Survival translates to actual
resource reduction, we applied the PyZX optimization pipeline
to the tractable subset of benchmarks (N < 100). Although,
PyZX is a deterministic, hence an imperfect proxy, the results,
detailed in Table II, strongly correlate with the structural anal-
ysis. The core argument of this study, nevertheless, remains
about optimizing for a better input than evaluating with an
imperfect proxy.

We observe a massive performance divergence based on
circuit topology:

o Arithmetic Circuits: For mod_adder_1024, preserv-
ing structure yields a 21.1% reduction in T-count (273
gates) compared to the random baseline. Similarly,
haml5-med sees a 34.5% reduction. This confirms that



Interaction Graph Topology: barenco_tof_10.qasm
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Fig. 2. Visual demonstration of topological degradation on the barenco_tof_10 interaction graph. Random partitioning (left) fragments the structure
(54.7% cut ratio), while METIS (right) preserves local algebraic clusters (1.6% cut ratio). Note that while this specific circuit (/N = 19) fits within optimization
limits, it serves here as an illustrative proxy to visualize the structural shattering that occurs in larger, intractable regimes.
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Fig. 3. The Scalability Wall: Gadget Survival Rate (GSR) as a function

of circuit scale. Even when the random baseline is reported as the maximum
survival found across 1,000 independent Monte Carlo trials (red), it exhibits a
catastrophic collapse as the qubit count N exceeds the AlphaTensor-Quantum
direct optimization limit (N =~ 60). In contrast, METIS (green) maintains a
deterministic floor of preservation (> 90%), ensuring that algebraic structures
remain intact for the downstream optimizer.

random partitioning was actively destroying optimization
opportunities in modular circuits.

High-Diffusion Circuits: For g£2"16_mult, the im-
provement is negligible (< 1%). This suggests that for
“hairball” topologies, the limiter is not the partition qual-
ity, but the lack of sparse cuts inherent to the algorithm
itself.
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TABLE 11
T-COUNT OPTIMIZATION RESULTS

Benchmark Type Orig. T Random Avg METIS Gain*

ModAdd-1024  Arith. 1995 1291 1019 +21.1%
Ham15-Med Arith. 574 337 218 +35.3%
Adder-8 Arith. 399 248 179 +27.8%
GF(2'%)-mult  Diff. 1792 1085 1084 +0.09%
QFT-4 Global 69 50 67 -34.0%

VI. DISCUSSION

A. Regime Dependence

Our results reveal a dichotomy in quantum circuit optimiza-
tion: the efficacy of partitioning is dictated by the underlying
algebraic topology of the circuit.

e The Modular Regime (Arithmetic): Circuits like

mod_adder_1024 and haml5-med represent the
“ideal case” for structure-preserving partitioning. These
circuits are composed of distinct functional units (e.g.,
carry chains) connected by sparse “wire” edges. Random
partitioning consistently severed these wires, destroying
the local context required for optimization. By restor-
ing these cuts, METIS achieved massive gains (+21%
to +35%). This validates our hypothesis: in modular
regimes, topology is the primary bottleneck.

The Diffusive Regime (Multipliers): Conversely, the
GF(2™) multipliers act as “expanders,” exhibiting high
connectivity where every qubit interacts with almost ev-
ery other. While METIS successfully maximized Gadget



Utilty Validation: METIS vs. Random Partitioning (PyZX Proxy)
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Fig. 4. Utility Validation across Benchmark Regimes: Relative T-count
improvement of METIS-based partitioning over the stochastic random baseline
(average of 10 trials) using PyZX as a proxy optimizer. Modular arithmetic
and logic/gadget circuits (blue and purple) exhibit significant gains (> 20%),
as structural preservation directly enables algebraic rewrite rules. Conversely,
diffusive multipliers (green) show marginal gains, illustrating the *Proxy Gap’
where structure is preserved but exceeds the capability of greedy optimizers.
The negative result for QFT (marked "Limit’) identifies the global connectivity
threshold where partitioning hinders non-local phase cancellation.

Survival (Mostly > 90% vs =~ 0%), this structural
preservation translated to negligible T-count improve-
ment (+0.09% for g£2"16). This suggests a “saturation
point”: in highly diffusive “hairball” topologies, local op-
timizers (like PyZX) are limited by the circuit’s intrinsic
complexity rather than the partitioning quality, although,
they can still provide excellent inputs to the RL-Agent.

« Global Connectivity Limit (QFT): We observed nega-
tive gains (-34%) for Quantum Fourier Transform circuits
(e.g., gft_4). Unlike arithmetic modules, QFT possesses
global all-to-all connectivity. Enforcing partitions on such
structures isolates phase rotations that a random approach
might coincidentally group together, demonstrating that
structure-preserving partitioning is detrimental for cir-
cuits lacking local community structure.

B. The Scalability Wall

A wvalid counter-argument to deterministic partitioning
would be that random exploration allows an RL agent to
“stumble” upon novel decompositions (e.g., Karatsuba-like
structures). However, our data demonstrates that this strategy
collapses as IV increases.

For small circuits (/N < 20), random partitioning occasion-
ally preserved gadgets by chance. However, for benchmarks
like GF(2!2%) (N = 384), the Random Gadget Survival Rate
dropped to 0.0% [Table III]. This indicates a sharp phase
transition: beyond a certain size, the probability of a random
cut preserving a 7-gate Toffoli gadget approaches zero. Given
that ATQ training costs scale cubically with tensor size, relying
on “random luck” in the N > 60 regime is computationally
unsustainable. METIS provides a necessary deterministic floor,
ensuring the expensive agent is initialized with structurally
coherent sub-problems.

14

C. Limitations

The Proxy Gap: This study utilized PyZX as a determin-
istic proxy for the neural policy of ATQ. While both share the
objective of phase polynomial cancellation, PyZX relies on
fixed rewrite rules (Phase Teleportation), whereas ATQ learns
dynamic decomposition strategies. Therefore, the fact that final
T-counts are identical does not prove that partitions will have
no effect when combined with ATQ.

Ancilla Resource Trade-offs: Our weighting scheme op-
timized exclusively for T-count reduction via gadget preser-
vation. However, gadgets are not free; they reduce T-count
by consuming ancilla qubits. The ATQ paper notes that for
bandwidth-constrained architectures, the overhead of ‘“gad-
getizing” every Toffoli might exceed physical device limits.
Our current framework treats all gadget opportunities as ben-
eficial, potentially generating circuits that, even if T-optimal,
are wider (in qubit count) than the hardware permits. Future
work must model this “Ancilla vs. T-gate” tradeoffs explicitly.

D. Future Direction: Learned Partitioning

The logical evolution of this work is to replace the heuristic
weights of METIS with a learned policy. It would be in-
teresting to see an End-to-End architecture where a Graph
Neural Network (GNN) partitions the circuit specifically to
maximize the final reward of the tensor decomposition agent
[15]. Rather than manually defining “gadget bonds” (w = 2.0),
the partitioner would learn which cut locations minimize the
downstream rank of the signature tensor. This would bridge
the gap between the “General Agent” approaches of [10] and
the topological insights presented in this report.

VII. CONCLUSION

AlphaTensor-Quantum (ATQ) represents a significant ad-
vance in quantum compiler technology. By reframing T-count
minimization as a tensor decomposition game and leveraging
deep reinforcement learning, the framework has demonstrated
the ability to discover optimized implementations of arithmetic
subcircuits that match or surpass decades of human design.
Its innovative use of symmetrized axial attention and gadget-
based rewards establishes a new state-of-the-art for automating
the design of fault-tolerant circuits.

However, as this study has identified, the framework’s
reliance on random-greedy partitioning constitutes a critical
structural bottleneck when scaling to the large, complex
topologies (N > 60) required for practical applications. By
proposing and validating a Structure-Preserving Partitioning
methodology, we have demonstrated that circuit topology is a
decisive factor in optimization efficacy.

Our key findings are summarized as follows:

o The Scalability Gap: We identified a sharp phase
transition in the efficacy of random partitioning. While
viable for small circuits, the random baseline collapses
in the deep scaling regime (NN > 300), yielding a
Gadget Survival Rate (GSR) of 0.0%. In contrast, our
spectral partitioning approach (METIS) maintains a GSR



of > 94%, providing the deterministic floor necessary for
expensive RL agents to function.

+ Regime-Dependent Utility: We discovered that struc-
tural preservation acts as an amplifier specifically for
modular topologies. For arithmetic circuits with distinct
functional units, restoring the partition cuts yielded mas-
sive T-count reductions, 21.1% for mod_adder_1024
and 34.5% for haml5-Med, compared to the random
baseline.

« The Hairball Limit: Conversely, for high-diffusion cir-
cuits like Galois Field multipliers, we found that topo-
logical preservation is necessary but not sufficient. While
METIS successfully isolated partitions, the intrinsic al-
gebraic density of these “hairball” structures saturated
the local optimizer, resulting in negligible T-count gains

(< 1%).

These results suggest that the high computational cost of
deep RL agents is best justified when the input data is
structurally sound. As quantum software stacks mature, they
must move beyond treating circuits as linear lists of gates
and embrace their nature as complex interaction networks.
Integrating graph-theoretic partitioning provides a low-cost
(< 1s), high-impact modification that complements advanced
learning agents. We conclude that Al-driven compilation is
most effective not when it ignores structure, but when it is
explicitly guided by it.
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APPENDIX

This appendix provides the complete experimental results
for all benchmarks evaluated in this report. Table IV reports
the T-count optimization performance across different circuit
categories, comparing the random-greedy baseline (averaged
over 10 trials) against the METIS-based structure-preserving
partitioning approach.

TABLE III

QUANTUM CIRCUIT PARTITIONING RESULTS
Circuit Category Qubits Total_ T N_Parts Rand_BestCut_Ratio Rand_BestCut_GSR Rand_MaxLuck_GSR Metis_Cut_Ratio = Metis_GSR
adder_8.qasm Arithmetic 24 399 2 0.43209 0.03509 0.08772 0.00912 0.89474
barenco_tof_10.qasm Logic/Gadget 19 224 2 0.41283 0.0 0.125 0.01603 0.84375
barenco_tof_3.qasm Logic/Gadget 5 28 2 0.21569 0.0 0.5 0.07843 0.5
barenco_tof_4.qasm Logic/Gadget 7 56 2 0.29565 0.125 0.25 0.03478 0.625
barenco_tof_5.qasm Logic/Gadget 9 84 2 0.3352 0.0 0.25 0.03911 0.75
csla_mux_3.qasm Arithmetic 15 70 2 0.31293 0.0 0.3 0.03401 0.7
csum_mux_9.qasm Arithmetic 30 196 2 0.40976 0.07143 0.10714 0.01951 0.85714
cycle_17_3.qasm Other 35 4739 2 0.48022 0.01477 0.03397 0.00353 0.96898
gf2"10_mult.qasm Arithmetic 30 700 2 0.44802 0.02 0.06 0.03107 0.7
gf2"128_mult.qasm Arithmetic 384 114688 7 0.85416 0.0 0.00018 0.00802 0.94275
gf2"16_mult.qasm Arithmetic 48 1792 2 0.47008 0.02344 0.04297 0.01295 0.82031
gf2"256_mult.qasm Arithmetic 768 458752 13 0.92217 0.0 2e-05 0.00507 0.96031
gf2"32_mult.qasm Arithmetic 96 7168 2 0.48429 0.02441 0.03027 0.00786 0.89941
gf2°4_mult.qasm Arithmetic 12 112 2 0.38889 0.0625 0.1875 0.04762 0.5625
gf2"5_mult.qasm Arithmetic 15 175 2 0.39512 0.0 0.12 0.06585 0.72
gf2°64_mult.qasm Arithmetic 192 28672 4 0.74424 0.00024 0.00122 0.00928 0.91577
gf2°6_mult.qasm Arithmetic 18 252 2 0.42904 0.02778 0.11111 0.0297 0.63889
gf2"7_mult.qasm Arithmetic 21 343 2 0.42857 0.0 0.10204 0.03333 0.69388
gf2"8_mult.qasm Arithmetic 24 448 2 0.4419 0.01562 0.07812 0.02025 0.76562
2f2"9_mult.qasm Arithmetic 27 567 2 0.45499 0.0 0.06173 0.02039 0.7284
grover_5.qasm Search 9 336 2 0.41657 0.02083 0.08333 0.01726 0.89583
ham15-high.gasm Other 20 2457 2 0.47135 0.02279 0.03989 0.00539 0.96296
ham15-low.qasm Other 17 161 2 0.40136 0.0 0.17391 0.03175 0.82609
ham15-med.qasm Other 17 574 2 0.44908 0.03659 0.07317 0.01961 0.91463
hwb10.qasm High-Diffusion 16 29939 2 0.49399 0.0173 0.02198 0.00027 0.99836
hwb11.qasm High-Diffusion 15 84196 2 0.49616 0.01538 0.01879 0.00011 0.99933
hwb12.qasm High-Diffusion 20 171465 2 0.49701 0.016 0.01813 0.00085 0.99971
hwb6.gasm High-Diffusion 7 105 2 0.36735 0.0 0.2 0.07483 0.73333
hwb8.qasm High-Diffusion 12 5887 2 0.48155 0.02021 0.02973 0.0014 0.99405
mod5_4.qasm Arithmetic 5 28 2 0.21053 0.25 0.5 0.07018 0.5
mod_adder_1024.qasm Arithmetic 28 1995 2 0.47498 0.02105 0.04912 0.00752 0.94737
mod_adder_1048576.qasm Arithmetic 58 17290 2 0.48524 0.01943 0.02429 0.00088 0.98988
mod_mult_55.qasm Arithmetic 9 49 2 0.31429 0.14286 0.28571 0.05714 0.57143
mod_red_21.gasm Arithmetic 11 119 2 0.36525 0.05882 0.11765 0.04255 0.58824
qcla_adder_10.gasm Arithmetic 36 238 2 0.36757 0.08824 0.11765 0.0036 0.94118
qcla_com_7.qasm Arithmetic 24 203 2 0.39579 0.03448 0.10345 0.02526 0.86207
qcla_mod_7.qasm Arithmetic 26 413 2 0.44164 0.01695 0.08475 0.01774 0.86441
qft_4.qasm High-Diffusion 5 69 2 0.31429 0.11111 0.33333 0.07857 0.66667
rc_adder_6.qasm Arithmetic 14 77 2 0.35567 0.0 0.27273 0.03093 0.90909
tof_10.qasm Logic/Gadget 19 119 2 0.36957 0.05882 0.17647 0.02174 0.88235
tof_3.qasm Logic/Gadget 5 21 2 0.05882 0.66667 0.66667 0.05882 0.0
tof_4.qasm Logic/Gadget 7 35 2 0.22581 0.0 0.2 0.06452 0.6
tof_5.qasm Logic/Gadget 9 49 2 0.3 0.0 0.28571 0.05556 0.71429
vbe_adder_3.qasm Arithmetic 10 70 2 0.31707 0.0 0.2 0.07317 0.7

Notes:

« Total T: Initial T-count of the circuit
+« Random GSR: Gadget Survival Rate using random-

greedy partitioning (Best of 1000 trials)

« METIS GSR: Gadget Survival Rate using structure-

preserving METIS partitioning

16



TABLE IV

T-COUNT OPTIMIZATION RESULTS (TRACTABLE BENCHMARKS, N < 96)

Circuit Category Original Random_Avg METIS_T Improvement Time_Sec
adder_8.qasm Arithmetic 399 248 179 69 3.05
barenco_tof_10.qasm Logic/Gadget 224 152 110 42 0.71
barenco_tof_3.qasm Logic/Gadget 28 21 18 3 0.06
barenco_tof_4.qasm Logic/Gadget 56 38 34 4 0.14
barenco_tof_5.qasm Logic/Gadget 84 57 22 35 0.23
csla_mux_3.qasm Other 70 63 62 1 0.24
csum_mux_9.qasm Other 196 143 92 51 0.73
¢f2”10_mult.qasm High-Diffusion 700 442 436 6 6.68
gf2"16_mult.qasm High-Diffusion 1792 1085 1084 1 100.89
gf2732_mult.qasm High-Diffusion 7168 4223 4186 37 4364.16
gf2"4_mult.qasm High-Diftusion 112 78 76 2 0.38
¢f2”5_mult.qasm High-Diffusion 175 119 117 2 0.77
gf2°6_mult.qasm High-Diftusion 252 166 158 8 1.22
¢f2"7_mult.qasm High-Diffusion 343 223 219 4 2.06
gf2"8_mult.qasm High-Diffusion 448 288 284 4 3.92
gf2"9_mult.qasm High-Diffusion 567 358 357 1 5.06
grover_5.qasm Search 336 241 176 65 1.55
ham15-high.qasm Arithmetic 2457 1449 1041 408 82.49
ham15-low.qasm Arithmetic 161 115 103 12 2.04
ham15-med.qasm Arithmetic 574 337 218 119 6.11
hwb6.qasm Other 105 83 83 0 0.51
hwb8.qasm Other 5887 4446 3523 923 1855.5
mod5_4.qasm Arithmetic 28 17 12 5 0.08
mod_adder_1024.qasm Arithmetic 1995 1291 1019 272 36.17
mod_mult_55.qasm Arithmetic 49 38 37 1 0.18
mod_red_21.qasm Arithmetic 119 89 81 8 0.45
qcla_adder_10.gasm Arithmetic 238 186 164 22 1.13
qcla_com_7.qasm Arithmetic 203 140 97 43 0.84
qcla_mod_7.qasm Arithmetic 413 295 237 58 2.69
qft_4.qasm High-Diffusion 69 50 67 —-17 0.17
rc_adder_6.qasm Arithmetic 77 61 47 14 0.39
tof_10.qasm Logic/Gadget 119 96 73 23 0.42
tof_3.qasm Logic/Gadget 21 19 15 4 0.06
tof_4.qasm Logic/Gadget 35 29 25 4 0.09
tof_5.qasm Logic/Gadget 49 40 33 7 0.13
vbe_adder_3.qasm Arithmetic 70 47 38 9 0.21

Notes:

o Original: Initial T-count of the circuit before optimiza-

tion

« Random: Average T-count after optimization using
random-greedy partitioning (10 trials)
¢ METIS: T-count after optimization using structure-
preserving METIS partitioning
o Gain: Absolute improvement in T-count (Random —

METIS); negative values indicate degradation
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The stability of GSR across orders of magnitude in weight
magnitude confirms that topological connectivity, rather than
fine-tuned weighting, drives the partition quality. Default
weight used in main experiments. Temporal weight wiemy
fixed at 1.0.

TABLE V
SENSITIVITY ANALYSIS: GADGET SURVIVAL RATE (GSR) UNDER
VARYING INTERACTION WEIGHTS (Wpond)-

Circuit Interaction Weight (wponq)
0.5 1.0 1.5 2.0 3.0 5.0 10.0 20.0

mod_adder_1024 94.7% 94.7% 94.7% 94.7% 94.7% 94.7% 94.7% 94.7%
¢f2"128_mult 943% 943% 943% 943% 943% 943% 943% 94.3%
ham15-med 91.5% 91.5% 91.5% 91.5% 91.5% 91.5% 91.5% 91.5%
hwb12 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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Abstract—The quantum internet is envisioned as a global net-
work enabling novel quantum services. While significant progress
has been made in quantum networking protocols and hardware,
fundamentally different architectural approaches coexist, and
their comparison remains largely unknown. In particular, the
absence of univocal, architecture-independent metrics hinders
objective evaluation and standardization. In this paper, we
critically analyze prominent quantum internet protocol stack
proposals and identify their core architectural differences. We do
not propose new performance metrics, but identify and formalize
those that remain meaningful across fundamentally different
architectural realizations, enabling systematic and reproducible
comparison across competing designs. The proposed framework
serves as a design and evaluation tool for future quantum internet
research and standardization efforts.

Index Terms—Quantum Internet, Architecture, Univocal Met-
rics

I. INTRODUCTION

The classical internet has transformed global communica-
tion. However, to this day it remains vulnerable to attacks
by quantum computers, enabling the breach of common data
encryption schemes in the near future [1]. Early advancements
in the field of quantum cryptography offered first ideas for
a secure way of transmitting information by utilizing the
inherent properties of quantum physics, via quantum key
distribution (QKD) [2], [3]. QKD is fundamentally based on
quantum teleportation, offering the possibility to move quan-
tum information remotely and over larger distances. In order
to create a system with the ability to teleport quantum states,
two end points need to be connected via entanglement. How-
ever, over larger distances quantum states loose information.
Latest research therefore introduced the concept of quantum
repeaters, supporting long distance entanglement [4]-[6]. With
the ongoing development of suitable architectural protocol
stacks, the possibility to deploy a large-scale quantum network,
a quantum internet, emerges [7].

A quantum internet is envisioned to provide fundamentally
new opportunities across different technical fields, including
quantum computing (QC) or quantum communication, by
enabling the global deployment of quantum technologies.
While QKD is still one of the flagship applications, quantum
networks also give attention to concepts, such as distributed
quantum computing (DQC), blind quantum computing (BQC),
and precision clock synchronization.

While promising, still, many challenges have to be overcome
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for the practical realization of a quantum internet [6], [8],
[9]. While the classical internet was successful without direct
decisions on a architecture stack, the inherent complexity and
the connected costs for the design of quantum internet calls for
clarity in the field. A protocol stack for the quantum internet is
crucial for enabling work on each independent layer. Despite
rapid progress, there is still no consensus on how different
quantum internet architectures should be compared empirically
[10]-[12].

This paper addresses this gap by making two contributions.
First, we provide a critical comparison of state-of-the-art
quantum internet architecture. Based on the gained insights,
we introduce a framework based on qualitative architectural
properties and quantitative performance metrics that enables
systematic and reproducible comparison across architectures.
The proposed framework serves as a design and evaluation
tool for future quantum internet research and standardization
efforts. We aim to answer the following research questions:

o What are the main architectural approaches towards re-
alizing a quantum internet?

o Which univocal, architecture-independent quantitative
metrics enable fair comparison across quantum internet
architectures?

The remainder of this paper is structured as follows. Sec-
tion II reviews relevant background in classical and quantum
networking. Section III surveys current architectures for a
quantum internet. In Section IV we review how quantum
networks can be evaluated, following a set of univocal metrics
in Section V. Finally, Section VI and Section VII discuss and
conclude the paper with directions for future work.

II. BACKGROUND

A. Classical Internet Protocols

Classical networking is structured using layered protocol
stacks such as the OSI or TCP/IP models, following the
principle of separation of concerns [13], [14]. Layering enables
independent development, scalability, and interoperability by
abstracting lower-layer details. Quantum internet architectures
frequently adopt similar layered approaches, while adapting
them to quantum-specific constraints such as probabilistic
operations, decoherence, and the no-cloning theorem.



B. Entanglement, Graph and GHZ States

Entanglement is the central resource enabling quantum
communication and distributed quantum applications [15],
[16]. Beyond bipartite entanglement, such as Bell pairs or
Einstein—Podolsky—Rosen (EPR) states, multipartite entangled
states, most prominently GHZ and graph states, play an in-
creasingly important role in quantum networking. GHZ states
support group-oriented applications such as multi-party QKD,
distributed consensus, and clock synchronization, while graph
states generalize GHZ states to arbitrary network topologies
and communication patterns. Although multipartite states can
be constructed from Bell pairs using LOCC, such conversions
introduce additional operational overhead and storage require-
ments. Architectures that natively support multipartite entan-
glement may therefore offer advantages in latency, resource
efficiency, and coordination complexity, particularly for multi-
user or group-oriented applications [17].

C. Quantum Networks and the Quantum Internet

Quantum networks extend classical distributed systems
into the quantum domain by interconnecting quantum nodes
equipped with quantum processing units (QPUs). Connections
between nodes may be classical, quantum, or hybrid, as most
quantum communication protocols rely on classical signaling
for coordination. Formally, a quantum network can be repre-
sented as a graph G = (V, E), where vertices denote quantum
nodes and edges denote communication links supporting quan-
tum operations. Quantum repeaters are a fundamental building
block enabling long-distance entanglement distribution by mit-
igating decoherence and transmission loss through operations
such as entanglement swapping and purification. Repeater
architectures are commonly classified into first-, second-,
and third-generation designs, with higher generations offering
improved rates and scalability at the cost of more demanding
hardware requirements [6]. The quantum internet is envisioned
as a large-scale interconnection of such networks, enabling
applications including quantum key distribution, distributed
quantum computing, and networked quantum sensing. Rather
than replacing the classical internet, it is expected to coexist
with and complement classical infrastructure by integrating
quantum and classical resources [18]-[20].

III. ARCHITECTURAL ANALYSIS OF STATE-OF-THE-ART
PROTOCOL STACKS

Efforts towards a quantum internet protocol stack reach far
back in time and have been discussed, improved and reshaped
several times, and are yet to be completed. The field is moving
rapidly and we review the current state of developments.
Critically analyzing differences and potential intersections is
helpful to understand how systems can be evaluated. With the
gained knowledge from this section, we thrive to offer features
for a qualitative comparison of architectures, laying the fun-
damental understanding for our evaluation with quantitative
metrics in Section V.
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A. Van Meter et al.

1) Design Philosophy: The architecture proposed by Van
Meter et al. [7], [21]-[24] follows a classical-inspired, modular
layer-stack approach. The central design goal is to enable in-
dependent development of services while ensuring robustness,
scalability, and interoperability across heterogeneous quantum
networks. The architecture is explicitly application-agnostic
and aims to support a broad range of quantum internet use
cases, including cryptographic protocols, distributed sensing,
and distributed quantum computation (DQC).

A defining characteristic of this approach is its reliance
on bipartite entanglement as the fundamental resource. While
the authors acknowledge the future importance of multipartite
states such as GHZ, W, or general graph states, these are
treated as extensions rather than native primitives. In this
architecture, Quantum repeaters play a central role, performing
entanglement generation, entanglement swapping, purification,
and local coordination.

2) Layering Model: The protocol stack, also depicted in
Figure 1, consists of five layers, each responsible for a distinct
set of quantum networking functionalities:

1) Physical Entanglement Layer: Performs entanglement
generation attempts between directly connected nodes.
Link Layer: Verifies successful entanglement generation
via classical signaling and repeats attempts until an EPR
pair is established.
Remote State Composition Layer: Extends entangle-
ment across multiple hops using entanglement swapping,
supported by routing and communication of classical
results.
Error Management Layer: Applies purification to main-
tain fidelity above application-defined thresholds. Error
correction can be applied before and after state propa-
gation.
5) Application Layer: Provides a Quantum Socket API
enabling applications to request entanglement or tele-
portation services.

2)

3)

4)

3) Control Assumptions: A distinctive feature of the archi-
tecture is its use of RuleSets [25], [26], which encode local
behavior at each node. A Rule consists of a Condition Clause
(triggering event) and an Action Clause (LOCC operation).
RuleSets are assigned during connection setup and govern op-
erations such as purification, swapping, and resource release.
Connection establishment follows a two-pass procedure. The
Initiator collects link-state information, while the Responder
constructs RuleSets for all nodes along the path. This design
supports competitive innovation, allowing service providers
to differentiate themselves through optimized RuleSets. Here
multiplexing is handled through a scheme that assigns qubits to
connections, but this introduces scalability concerns, as qubits
allocated to a connection must remain at the repeater until the
RuleSet completes. To mitigate resource locking, the authors
introduce the notion of Stages, which free resources once the
associated rules have been executed. To address scalability
across networks, the authors introduce the Quantum Recursive
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A simplified overview of protocol stacks by Van Meter et al., Wehner et al. and Diir et al., offering insights on layer structures and main tasks.

Additionally, the figure shows the different distances and fundamental concepts of entanglement (Inspired from [10]).

Network Architecture (QRNA) [22], enabling recursive com-
position of subnetworks while preserving autonomy, privacy,
and security.

B. Wehner et al.

1) Design Philosophy: Wehner et al. propose a quantum
network architecture based on a layered protocol stack that,
similar to Van Meter et al., relies on bipartite entanglement as
the fundamental resource [9], [27]-[29]. Their work is comple-
mentary to the quantum repeater protocol stack developed by
Van Meter et al. [7], but with a stronger emphasis on the tight
integration between the protocol stack and underlying quantum
hardware. A key conceptual distinction in their architecture is
the separation between controllable and automated quantum
nodes. Controllable nodes execute decision-making logic and
run applications, whereas automated nodes perform fixed,
repetitive actions at each time step. This distinction resembles
the end-node and support-node roles described in [24]. The
overall design philosophy follows a bottom-up approach: each
layer is developed independently to provide a robust and
resource-efficient service before higher layers are introduced.

2) Layering Model: The architecture is inspired by the OSI
model and consists of the following layers, also depicted in
Figure 1:

1) Physical Layer: Responsible for entanglement attempts
between neighboring nodes. Early quantum networks
rely on the midpoint heralding protocol (MHP), where
a midpoint node performs a joint measurement on two
incoming qubits and sends classical heralding signals to
the endpoints.
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2) Link Layer: Coordinates entanglement generation be-
tween adjacent nodes. The entanglement generation
protocol (EGP) includes a Queue, Quantum Memory
Management (QMM), a Fidelity Estimation Unit (FEU),
and a Scheduler. When higher layers request a number
of entangled pairs with fidelity and waiting-time con-
straints, the FEU evaluates feasibility and, if acceptable,
places the request in the Queue. The Scheduler and
QMM then attempt to satisfy the request.

Network Layer: Establishes long-distance entanglement
between nodes that are not directly connected. Ko-
zlowski et al. [29] propose a network-layer protocol
intended to operate together with the link layer as
part of a local quantum operating system. This layer
tracks entangled pairs and their Bell-state type, manages
fidelity thresholds, and handles fidelity-rate trade-offs.
The authors highlight the need for routing, signaling,
and data-plane protocols within this layer.

Transport Layer: Envisioned to handle the transmission
of qubits to the application layer, typically via telepor-
tation.

Application Layer: Provides the interface for executing
quantum applications.

Current work by Wehner et al. focuses primarily on the
physical, link, and network layers. The transport and appli-
cation layers remain less fully specified, consistent with their
incremental bottom-up development strategy.

3) Control Assumptions: Control in this architecture is
distributed across controllable nodes, while automated nodes
execute fixed routines. The link layer plays a central role in co-

3)

4)

)



ordinating entanglement generation, with the EGP components
(Queue, QMM, FEU, Scheduler) jointly determining when and
how entanglement attempts occur. The network layer assumes
local tracking of Bell-state types and fidelity information,
enabling routing and resource allocation decisions. Overall,
the architecture assumes that each node maintains local state
information and participates in coordinated scheduling, but
without the explicit rule-based control model used by Van
Meter et al.

C. Diir et al.

1) Design Philosophy: In contrast to the architectures by
Van Meter et al. and Wehner et al., which rely primarily
on bipartite Bell-pair entanglement, the architecture proposed
by Diir et al. [17], [30] treats multipartite entanglement as
a native and fundamental resource. While other approaches
acknowledge the future importance of multipartite states, Diir
et al. build their entire architecture around the generation, dis-
tribution, and manipulation of multipartite graph states. Their
design follows a bottom-up philosophy in which entanglement
is generated prior to application requests. This proactive strat-
egy is motivated by the observation that pre-distributed multi-
partite states can significantly reduce operational overhead for
many quantum networking tasks. The architecture is structured
around three operational phases, dynamic, static, and adaptive,
which together define how entanglement is created, stored, and
transformed.

2) Layering Model: The three operational phases motivate
a layered protocol stack with the following components, see
Figure 1:

1) Physical Layer: Establishes quantum channels between

neighboring nodes and generates entanglement using

a heralding scheme, enabling repeated attempts until

success.

Connectivity Layer: Creates long-distance entanglement

across multiple links using quantum repeaters. Both

bipartite and multipartite states may be generated. En-
tanglement generation and routing protocols reside here
and can be exchanged without affecting upper layers.

3) Link Layer: Coordinates the lower layers to construct the
global network state and transform it into the specific
graph states requested by applications.

4) Network Layer: Handles inter-network routing and en-
ables requests across administrative boundaries. It es-
tablishes a virtual network state via quantum routers
connected through multipartite entanglement. Combined
with intra-network states, this forms an end-to-end net-
work state between devices. The routing protocol itself is
not specified and is typically implemented by network
administrators. This layer is inspired by the Quantum
Recursive Network Architecture (QRNA) [22].

Each layer may employ auxiliary protocols such as entan-
glement distillation, reachability checks, entanglement swap-
ping and merging, error correction, and network monitoring.
These are considered layer-independent building blocks.

2)
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3) Control Assumptions: The architecture is structured
around three operational phases. First, in the dynamic phase
Multipartite entangled states are proactively distributed across
the network, forming a shared network state. This pre-
distributed entanglement is essential for efficient graph-state
generation. Then the generated entangled states are stored in
quantum memories until needed, referred to as the static phase.
Lastly, in the adaptive phase, upon receiving a request, or
when a device failure occurs, the stored states are manipulated
using LOCC operations to produce the desired graph state. Un-
like earlier approaches relying on a central master node, Diir
et al. emphasize distributed generation. Control is therefore
distributed and heavily dependent on local LOCC operations,
with the network state serving as a shared resource that can
be adapted to different application needs.

This concept is the least experimentally tested. It misses
detailed protocol specifications, is limited by current state of
hardware and not developed for multi user handling. While
lacking real-world applicability, the concept of multipartite
entanglement is crucial for a future quantum internet. Addi-
tionally, the concept of pre-distributed entanglement can have
advantages to on-demand schemes, as proposed by Diir and
Van Meter.

D. Cross-Architecture Comparison

The three architectures analyzed above share the common
goal of enabling scalable quantum networking, yet they differ
fundamentally in their design philosophy, entanglement model,
and control assumptions. The field remains highly exploratory,
but also drifts towards more collaboration in terms of funda-
mental principles and goals [31]. In this section we offer a
qualitative comparison of the models (also see I), which will
lay the foundation the identify suitable univocal metrics for
performance comparisons.

1) Entanglement Model: The most fundamental distinction
lies in the choice of entanglement resource. Van Meter et
al. and Wehner et al. rely on bipartite Bell-pair entangle-
ment generated on demand and extended via entanglement
swapping. This model aligns well with current experimental
capabilities and supports incremental deployment. In contrast,
Diir et al. treat multipartite entanglement as a native resource.
Their architecture emphasizes pre-distributed network states,
enabling efficient multi-party operations but imposing stricter
requirements on quantum memory coherence and coordina-
tion. This distinction has direct implications for scalability,
and application suitability.

2) Control Structure: Van Meter et al. adopt a hierarchical
control model in which end-to-end connection setup is orches-
trated through RuleSets constructed by the responder. This
allows nodes to operate autonomously and asynchronously,
reacting to events rather than waiting for centralized instruc-
tions. Wehner et al. pursue a more decentralized approach,
with clearly defined responsibilities at each layer and a
strong emphasis on local scheduling, fairness, and hardware
abstraction, handling service requests, without global end-
to-end orchestration. Their model is tightly coupled to re-



Dimension Van Meter et al.

Wehner et al. Diir et al.

Entanglement Model
Control Structure
Hardware Assumptions

Bipartite, on-demand
Hierarchical, RuleSet-based
Moderate, repeater-centric
Application Suitability Teleportation, QKD, point-to-point
DQC

Deployment Readiness Near-term feasible

Bipartite, on-demand
Decentralized, scheduler-driven
Strong hardware abstraction

Multipartite, pre-distributed
Distributed LOCC, phase-based
Advanced memories, multipartite
sources

Multi-party tasks, distributed com-
puting, graph-state protocols
Long-term, forward-looking

Multi-user QKD, shared network
services
Near-term feasible

TABLE I
HIGH-LEVEL COMPARISON OF THE THREE QUANTUM INTERNET ARCHITECTURES.

alistic device capabilities. In the architecture by Diir et al.,
requests are handled in the adaptive phase by selecting and
transforming pre-distributed multipartite network states via
distributed LOCC operations, rather than triggering real-time
entanglement generation or end-to-end scheduling.

3) Hardware Assumptions: Van Meter et al. focus more on
architectural formulation, while Wehner et al. explicitly target
heterogeneous hardware platforms and integrate protocol de-
sign with realistic device constraints. In comparison, Diir et al.
assumes advanced capabilities for multipartite entanglement
generation and long-lived quantum memories, making their
approach more forward-looking but less immediately deploy-
able.

4) Application Suitability: All three architectures sup-
port point-to-point applications such as QKD, DQC and
teleportation-based communication. However, multipartite-
native architectures offer clear advantages for group-oriented
tasks, including distributed consensus, clock synchronization,
and certain distributed quantum computing models. Bipartite
architectures, by contrast, are better suited for early-stage
networks where reliability, incremental deployment, and com-
patibility with existing experimental platforms are essential.

Eventually, architectures should and can not be viewed as
mutually exclusive alternatives but rather as complementary
design philosophies. No architecture is complete or mature
enough to be declared a definitive solution. Therefore, in
the next section, we analyze metrics, which could provide a
framework for making these trade-offs explicit and comparable
across architectures eventually.

IV. EVALUATING QUANTUM NETWORKS

Proposed architectures for a quantum internet are still
largely in a theoretical phase. Nevertheless, early and sys-
tematic comparison is crucial to guide ongoing research and
design choices. This need intensifies as experimental platforms
mature and the prospect of real-world quantum networks draws
closer. However, evaluating and comparing quantum internet
architectures remains challenging due to the lack of unified,
architecture-independent evaluation criteria.

A. Metrics and Evaluation Frameworks

A wide range of metrics has been proposed for evaluating
quantum networks, but these efforts remain fragmented and
are often tied to specific protocols or assumptions. Existing
work focuses on isolated layers of the quantum networking
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stack, making cross-architecture comparison difficult. This
section structures evaluation metrics into different categories,
highlighting the absence of a unified, architecture-aware metric
suite.

1) Physical-Layer Metrics: Physical-layer metrics quantify
the quality and stability of quantum states and the capabilities
of underlying hardware components. The most widely used
metric is fidelity, which measures the closeness between an
actual shared quantum state and an ideal Bell or GHZ state
[32]. Fidelity thresholds often determine whether entanglement
is suitable for applications. Closely related is the quantum
bit error rate (QBER), an experimentally accessible proxy
for fidelity, particularly in QKD-oriented evaluations [32].
Additional physical-layer metrics include decoherence time
and quantum memory lifetime, which determine how long
entanglement can be stored before degrading [33], gate and
measurement error rates [12], or channel loss and photon
arrival probability [34].

2) Link- and Path-Level Metrics: At the link level, the
most common metric is the entanglement generation rate /
throughput, typically expressed as the number of EPR pairs
generated per second [35]. This rate is typically constraint
to a fidelity threshold of pairs. Other commonly used link-
and path-level metrics include latency or processing overhead,
measuring the time from request initiation to the availability
of entanglement at the destination [32], success probability of
entanglement generation or entanglement swapping operations
[34], hop count, which correlates with fidelity degradation and
classical signaling delays [36], [37].

3) Application- and Network-Level Metrics: Continuous
entanglement distribution capabilities of a network can be
measured with virtual neighborhood size, number of other
nodes with which a node can establish usable entanglement,
and virtual node degree, number simultaneous possible en-
tanglements with nodes [38]. Some metrics evaluate quantum
networks from the perspective of end applications rather than
underlying network behavior, including secret key rate in QKD
[6]. A commonly used metric is the classically inspired fair-
ness, calculated with Jain’s fairness index [39], ensuring that
performance does not depend disproportionately on request
origin or network position [9]. Beyond physical and network-
centric metrics, several works propose utility-based evaluation
frameworks. Quantum Network Utility Maximization (OQNUM)
evaluates routing protocols by assigning utility values to en-



tanglement distribution outcomes [40]. Similarly, Lee ef al. in-
troduce a capacity benchmarking framework that incorporates
social and commercial value into a unified utility metric [41].
Such approaches can provide valuable high-level perspectives,
however often are far from real world applicability.

B. Simulation-Centric Evaluation

As of now, large field studies are not feasible, therefore

simulation tools and test bed experiments are the state-of-the-
art evaluation methods. While test bed experiments are highly
relevant, they are still limited to just a few nodes, and thus
more relevant for specific use case studies, like employing
a QKD protocol. Hence, for the evaluation of large scale
quantum networks and protocol stack proposals, simulation
is the state-of-the-art option for evaluation [12].
Simulators vary concerning assumptions, flexibility, and phys-
ical modeling. Most prominent simulation tools are NetSquid
[42], SeQUeNCe [43], QuNetSim [44], SimQON [45] or QUISP
[46]. Studies have shown that, under equal assumptions,
such can support reproducible architectural comparison. For
example, analytical performance comparisons of alternative
node-level architectural designs have been validated in Net-
Squid by evaluating entanglement fidelity, throughput, and
waiting-time distributions under realistic hardware assump-
tions [47]. Regarding, comparisons across different simulators,
recent cross-validation studies show significant discrepancies
between NetSquid and SeQUeNCe, driven by differences
in timing models, noise assumptions, and architectural ab-
stractions, while fidelity values remain consistent [48]. Such
inconsistencies highlight a critical concern: the conclusions
drawn from simulation-based evaluations need to be valid,
posing the urgent need for standardized benchmarking and
cross-platform validation to ensure the reliability of future
quantum internet research.

V. UNIVOCAL EVALUATION METRICS ACROSS
ARCHITECTURES

As emphasized by Illiano et al. [10], the identification
of univocal evaluation metrics for quantum networks is a
central but unresolved challenge. While quantum internet
architectures differ fundamentally, many metrics used in the
literature are still tightly coupled to specific architectures or
protocols and therefore do not support fair cross-architecture
comparison. A metric is univocal if it is externally observable
at the service boundary and retains its meaning across architec-
tural realizations. In this section, we identify a minimal set of
univocal quantitative metrics, enabling objective comparison
without prescribing a particular architectural model. Addition-
ally, we try to identify missing metrics that could be subject
to future efforts.

A. Design Principles

We base this section on the architectural principles outlined
in [31], providing design guidelines intended to remain valid
across technologies, architectures, and further stages of de-
ployment. The quantum internet is primarily a service for cre-
ating, managing, and delivering entanglement between remote
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nodes. Metrics should therefore view entanglement as a funda-
mental service, quantifying the delivery, quality, and availabil-
ity of entangled states rather than internal protocol operations.
As architecture must accommodate heterogeneous hardware
platforms, link technologies, and repeater generations, metrics
should not rely on technology-specific assumptions and must
remain interpretable across diverse implementations. Due to
finite coherence times and limited quantum memory life-
times, time as a critical resource in quantum networking.
Metrics must therefore capture latency, throughput, and time-
dependent resource consumption. Eventually, architectures
must tolerate imperfect devices, lossy channels, component
failures and multiple users or applications. Evaluation metrics
should reflect robustness and availability of services. Given
the early stage of quantum networking technology, metrics
should remain valid under future evolution, avoiding tight
coupling to current design choices.

B. Entanglement Metrics

These metrics quantify whether and how effectively entan-
glement reaches the application layer.

o Throughput (T): The average rate at which usable entan-
glement resources are delivered to the application layer,
measured in entangled states per unit time [6], [49]-[52].
Throughput can be defined as

o Ndelivered
At

where Ngeliverea denotes the number of entangled states
successfully delivered to the application layer within the
observation interval At.

o End-to-End Fidelity (Feo.): Fidelity of the delivered
entangled state as observed by the application, indepen-
dent of the generation mechanism [48]-[51], [53]. For
a delivered quantum state pge; and an ideal target state
|*ideal), the end-to-end fidelity is defined as

T ey

Fe2e = <widea1| Pdel |wideal> (2)

C. Temporal Metrics

Temporal performance metrics capture the time-related as-
pects of entanglement delivery [51], [53], [54].

e Request Latency (L,): The elapsed time between the
initiation of an entanglement service request and its
completion at the requesting node. Formally,

3

Lr = tcomplctc - trcqucst

where fcquest denotes the time at which the request
is issued, and fcomplete denotes the time at which all
requested entanglement resources have been successfully
delivered to the application layer, including all contribut-
ing delays, such as queuing, entanglement generation
attempts, entanglement swapping, and classical signaling
[27].



e Unit Latency (L,,): The average time required to generate
and deliver a single entanglement unit. It is defined as

L
Lu_E[NJ

where V,, denotes the number of entanglement units re-
quested. The entanglement unit is kept abstract to support
both bipartite and multipartite entangled resources [27].

o Scaled Latency (Ls): The request latency normalized by
the number of entanglement units requested, capturing
the effective latency per delivered unit for a given request
[27]:

“4)

®)

This metric reflects the impact of scheduling, contention,
and congestion. In the absence of concurrent requests, L
reduces to the unit latency L,,.

D. Robustness & Fairness Metrics

We note Fairness (J;) as the sole currently utilized metric
in this category. It calculates the balance of resource allocation
across request origins or network positions (Jain’s index). The
metric is resource type independent and can be defined for
several measures ¢ (e.g., 7" or L,.) [45], [52], [55].

X N2
(Zk:l f”/(;))
= oy
K3 (xk )
(0

where Jfk,) denotes the value of performance measure ¢ ob-
served for request origin or network position &, and K is the
total number of considered origins or positions. The fairness
index satisfies 0 < J; < 1, with J; = 1 indicating perfectly
fair allocation.

Classical networking metrics often include availability [56],
describing the percentage of time a user is able to request a
service over one or multiple paths. A inspired metric could be
interesting for a quantum network metric, however is out of
scope for this work.

(6)

E. Metric Applicability and Taxonomy Validation

As current quantum network protocol stacks do not yet
expose a fully specified application layer, we validate our
metrics by instantiating the metrics at the highest available
service boundary provided by an existing research proto-
type. Our study is based on the NetSquid implementation
outlined in [29], including physical-, link-, and network-
layer functionality. Metrics are therefore measured at the
network service interface. We consider a minimal three-node
repeater topology (RA-R0-RB) with symmetric entanglement
requests between end nodes. To demonstrate that the taxonomy
remains applicable across different operational regimes, we
evaluate two entanglement-generation models, a MHP scheme
as implemented in the reference protocol, and an idealized
generation model, referred to as Magic. In addition, baseline
and degraded link conditions are considered to assess metric
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behavior under controlled noise. As expected, idealized en-
tanglement generation results in higher values compared to
the heralded scheme, while degradation leads to a pronounced
reduction in end-to-end fidelity, caused by introduced noise.
Under symmetric demand, fairness remains close to one in
all cases (see Appendix Table II and III). These results do not
aim to provide architectural insights, instead, they demonstrate
that the proposed univocal metrics can be instantiated and
measured consistently in an existing protocol stack, thereby
validating the practical applicability of the taxonomy.

F. Discussion

The comparison of quantum internet architectures showed,
that concepts fundamentally differ in terms of real world ap-
plicability. We noticed, the development of a quantum internet
will be a joined effort, and will require collaboration across
different fields. Based on the state of current architectures, we
tried to identify a set of representative metrics, offering a fair
comparison between models across fundamentally different
architectural designs. We acknowledge, that a comprehensive
empirical validation across simulators, topologies, or hardware
platforms is beyond the scope of this work and left for
future benchmarking studies. This also highlights the need
for benchmarking of large scale quantum networks, with a
set of representative tasks. Our metrics provide a foundation
for future standardization efforts, however we note that a full
implementation of large scale quantum network in any kind
of form is crucial fur further progress as we are still missing
relevant understanding of the purpose of a quantum internet.
Without the full knowledge, the identification of univocal
metrics is a hard tasks, needing iterative improvement over
the next development stages.

VI. CONCLUSION AND FUTURE WORK

This paper examined the progress regarding several quan-
tum internet architectures and addressed the lack of univocal
metrics for their evaluation. By critically analyzing state-
of-the-art protocol stacks and proposing a taxonomy that
separates qualitative architectural decisions from quantitative
performance metrics, we provide a structured framework for
evaluating competing designs. Our analysis highlights trade-
offs between scalability, feasibility, entanglement models, and
performance. The proposed taxonomy enables these trade-
offs to be made explicit and comparable. Ultimately, we
envision this framework contributing to the development of
standardized reference models for the quantum internet.
Future work needs to further cross-check simulation tools
and create benchmarks to compare different architectural
approaches under unified assumptions. This would enable
us to further validate our proposed metric stack. Regarding
the development of a quantum internet architecture, one of
the most critical open challenges is scalable multiplexing.
From our work, no architecture could provide details on how
concurrent users could access a quantum internet with equal
efficiency and fairness.



DATA AND CODE AVAILABILITY

The code used to generate the results of this work
and all data are publicly available at: https:/github.com/
JohannesWittmann9/QuantumNetworkMetrics
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APPENDIX
METRICS EXPERIMENTS

We offer detailed results of our metrics implementation from Section V-E in Table II and III. Note that the unit and scaled

latency metrics (L., L,) in Table II are always equal. This is caused by missing concurrency of request, as elaborated in
Section V-C.

TABLE II
PERFORMANCE METRICS COMPARISON: MAGIC VS MHP ENTANGLEMENT GENERATION ACROSS IDEAL AND DEGRADED NETWORK CONDITIONS. WE
COMPARE REQUEST FROM BOTH END NODES RA AND RB.

Mode Scenario T L, Ly Ls Feae Jr
(states/s) (ms) (ms) (ms)
Ideal (RA) 14202 143 072 072 0970 0.983
Magic EG Ideal (RB) 1408.3 145 073 0.73 0.970
Degraded (RA) 1460.5 139 0.69 0.69 0.659 0991
Degraded (RB) 1498.8 134 0.67 0.67 0.659 ’
Ideal (RA) 1215.1 1.68 0.84 0.34 0.970 0.983
MHP EG Ideal (RB) 12514 1.63 081 081 0.970
Degraded (RA) 1102.8 1.84 092 092 0.659 0.990
Degraded (RB) 1091.8 1.84 092 092 0.659 ’
TABLE IIT
FAIRNESS METRICS FOR RESOURCE ALLOCATION
Configuration Jr Jir JFe2e
(Throughput) (Request Latency) (Fidelity)
Magic EG, Ideal 0.983 0.978 1.000
Magic EG, Degraded 0.991 0.990 1.000
MHP EG, Ideal 0.983 0.979 1.000
MHP EG, Degraded 0.990 0.990 1.000

28



HHL: A quantum algorithm for solving linear
systems of equations

Tom Naftali Kérner
LMU Munich
Munich, Germany
T.Koerner @campus.lmu.de
Supervisor: Karl Fiirlinger

Abstract—Quantum algorithms aim to achieve an advantage
over classical methods, offering the potential for exponential
speedups in specific computational tasks. One such fundamental
challenge is the solution of Linear System Problems (LSP). This
paper analyzes the Harrow Hassidim Lloyd (HHL) algorithm,
which is an existing, efficient quantum method developed to find
the solution to such systems. The HHL algorithm is notable for
offering an exponential speedup in comparison to the best-known
classical method, positioning it as a key tool for implementing
scalable quantum machine learning models where linear alge-
braic operations are crucial. However, this speed advantage is
constrained, as it does not apply to the full readout of the
solution vector, thus restricting its applicability to scenarios
where only statistical information or further quantum processing
is required. Nevertheless, the principles demonstrated by HHL
hold significant promise for future applications, particularly in
complex simulations like tensor network simulation for many-
body simulations and in accelerating high-performance comput-
ing through advanced matrix operations.

Index Terms—Quantum Algorithms, HHL, LSP, Classiq, Cirq

I. INTRODUCTION

Over four decades ago, Richard Feynman, one of the most
influential physicists of the 20th century and a Nobel Prize
winner, imagined a computer that could exploit the very
principles of quantum mechanics. In his 1981 talk “Simulat-
ing physics with computers,” Feynman argued that classical
computers are inherently limited in their ability to model
quantum systems and thus was the first to suggest a “quantum
computer” that could efficiently simulate the behavior of
nature itself [1].

The so-called Quantum advantage refers to the demonstrated
cases where quantum computers can outperform classical
computers in specific tasks. Proven examples include quantum
simulation, which represents a rather trivial but fundamental
case, as quantum systems can be inherently better mapped
by a quantum computer. But also famous examples like
the Quantum Key Distribution (QKD) protocols in guantum
cryptography, which gained a lot of attention due to Shor’s
algorithmthreatening classical RSA encryption schemes [2].
Another notable example is Grover’s algorithm for search-
ing through unsorted databases exponentially more efficiently
than any classical counterpart so far [3]. Nevertheless, the
development of practical and large-scale quantum computers
remains an ongoing area of active research. Interestingly, the
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first programming language existed before the first computer,
and history might now repeat itself with the development of
quantum algorithms preceding fully realized quantum comput-
ers [4].

The seminar paper will present another very powerful quantum
algorithm intuitively, the so-called Harrow Hassidim Lloyd
(HHL) algorithm [5], which is an efficient method to solve
Linear System Problems (LSP). This algorithm will be defined
and explained in section II. Moreover, the HHL algorithm
will be analyzed in detail in section III by explaining the
principles as well as the limits of the method. Finally, a
reference implementation is presented in section IV.

II. BACKGROUND
A. Linear System Problem

A LSP describes the task of determining the unknown vector
Z that satisfies a given system of linear equations, as can be
seen in eq. 1.

A-Z=be =411 (1)
Hereby, A is a hermitian', and thus quadratic matrix with
dimension N x N and & and b are vectors with dimension
N.

B. Classical Algorithms

Before introducing the quantum algorithms, it is important
to name and explain some classical references to be able to
classify the superiority of the quantum alternative.

1) Gaussian: The most widely known method to retrieve
the solution of an LSP is the so-called Gauss Elimination
Method (GEM), whereby the first step is to create a new matrix
A’ as in eq. 2 that is then possible to bring into a so-called row
echelon form [6] with equivalent transformations as shown in

eq. 2.
A= (A b)w(é i)()

! Any quadratic matrix can be converted to a hermitian matrix by creating a

@)

new matrix A’ = /?T 13) with dimensions 2N x 2N. Then the equation
Alyg = (8) would be solved to obtain the solution (g) [5].



Although this method is relatively simple to understand and
straightforward to implement, it unfortunately exhibits cubic
scaling with respect to the matrix dimension N [7].

2) Conjugate Gradient Method: A much more powerful
method is the so-called Conjugate Gradient Method (CGM),
the currently fastest known classical solving algorithm for the
LSP. In comparison to the GEM, whose complexity is O(N?),
it only scales linearly with respect to the matrix dimension N.
As the name suggests, the algorithm searches for the solution
in the direction of the steepest descent after calculating it,
depending on an initial guess. The loss function l(;;/ ) to be
minimized is, hereby, simply given by the difference between
the two sides of eq. 1:

(') = b— Ad 3)

For the algorithm to be efficient, the matrix A needs to be
sparse. Sparsity describes the ratio of the zero elements in
comparison to the number of rows and columns of the matrix.
Therefore, a sparse matrix contains only a very limited number
of non-zero elements and is otherwise called a dense matrix

[7].
C. Quantum Algorithms

Quantum algorithms aim to solve computational problems
more efficiently than classical algorithms, often targeting an
exponential speedup for specific tasks. They have found appli-
cations in areas such as optimization, simulation of quantum
systems, and Quantum Machine Learning, where they can be
used for clustering, classification, and pattern recognition in
large datasets. In the context of quantum machine learning,
one of the most widely used algorithms for this purpose is
the HHL algorithm, introduced in 2008 by Aram Harrow,
Avinatan Hassidim, and Seth Lloyd. The reason for this is
that efficiently solving linear systems of equations is crucial,
as many models rely on linear algebraic operations, making the
HHL seemingly a key tool for implementing scalable quantum
machine learning models [8].

D. Related work

There are a various amount of papers presenting the HHL
Algorithm and others that show use cases. As this seminar
paper aims to present the algorithm understandably, a focus
is laid on explaining the basics of the algorithm, and thus
fundamental papers, instead of applications.

Therefore, the paper by Harrow, Hassidim, and Lloyd
[5] is presented, which explains the HHL algorithm in
mathematical detail and provides a thorough analysis of its
runtime, optimality, and error behavior, and is cited several
thousand times.

Furthermore, [7] is a self-contained paper that provides
a step-by-step walkthrough of the algorithm, covering
both the quantum circuit and a simple numerical example
to support understanding. It also includes the necessary
background knowledge, such as Quantum Phase Estimation,
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the Quantum Fourier Transform, and fundamental concepts of
Quantum Mechanics and Quantum Computing. Moreover, it
presents an implementation on IBM Quantum and discusses
the obtained results from the author’s own experiments.

Finally, [8] presents a paper that thoroughly discusses
the limitations of the HHL algorithm and seeks to clarify
common misconceptions about its applicability and potential
use cases.

III. HHL ALGORITHM

A. Description

The goal of the HHL algorithm is to find the solution
quantum mechanically by introducing quantum states. Thus,
the solution state |z) to the linear system problem A|x) = |b)
is to be found in the form A~1|b) Zfibofl A by lug).
The algorithm starts by encoding the input vector |b) using
amplitude encoding and simulating the matrix A by encoding
it as the Hamiltonian of a unitary gate. Furthermore, Quantum
Phase Estimation (QPE) is used to find the eigenphase of the
unitary gate, which is proportional to the eigenvalue of A, and
store this value using basis encoding. This stored eigenvalue is
then used to perform a controlled rotation on a single ancilla
qubit. This step is carefully designed so that, upon successful
measurement of the ancilla qubit as |1),, the desired factor
)\i_lbi appears in the coefficients of the quantum state. Since
the registers are entangled at this point, an uncomputation
using inverse QPE (IQPE) is required to disentangle them and
leave the final answer, |z), stored in the appropriate register

[7].

B. Quantum Circuit

One way of implementing the HHL Algorithm is a quantum
circuit composed of a total of n, + n + 1 qubits, which are
initialized to the |0) state and partitioned into three registers.
The b-register consists of n; qubits and is used to encode the
components of the input vector |b) using amplitude encoding,
as well as to store the final solution vector |x). The c-
register contains n clock qubits. It is related to the time in
the controlled rotation of the QPE part, and it stores the
phase values of the eigenvalues of the matrix A using basis
encoding. The final qubit is the single ancilla qubit |1)), which
is utilized to extract the solution before being discarded by
performing the measurement [7]. In the following, the steps
of the quantum circuit are discussed in detail.

1) State preparation: The total n, + n 4+ 1 qubits are
initialized as [¥o) = |0 - 0)3|0- - - 0),|0)4. The objective of
the State Preparation step is to rotate the |0- - -0), state in the
b-register so that its amplitudes correspond to the coefficients
of the input vector b, resulting in the state |b). The state of the
circuit after this operation is then |¥y) = |b),|0 - - - 0).]0)q.
The specific state preparation operation is, thus, dependent on
the actual values of b [7].
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Fig. 1. Quantum Circuit Diagram illustrating the various steps and different registers of a potential implementation for the HHL Algorithm [7]. This includes
the three registers b, c, and the register for the ancilla qubit, as well as the steps State Preparation, QPE, Controlled rotation (in the upper part), and the

Measurement and IQPE (in the lower part).

2) Quantum Phase Estimation: QPE is an eigenvalue es-
timation subroutine that aims to estimate the phase ¢ of the
eigenvalues of the unitary rotation matrix U = exp(iAt) in
the controlled gate from the c-register to the b-register. This
gate encodes the linear system matrix A as its Hamiltonian?.
The QPE process has three components: superposition of
the clock qubits through Hadamard gates, controlled rotation,
and Inverse Quantum Fourier Transform (IQFT). The process
begins by applying Hadamard gates to the n clock qubits,
creating a superposition state, [¥2) = [b) 5775 (|0) +[1))©"(0).
Next, controlled-rotation gates, U 2" with r being the index
of the clock qubit in the c-register, are applied to the b-
register, with the clock qubits acting as the controllers. Finally,
IQFT is applied only to the clock qubits. This causes the
clock qubits to encode the eigenvalues of A (or at least
scaled Versigns S\j) using basis encoding, resulting in the state
W) = 350 bslug)|A)[0)a (71

3) Controlled Rotation and Measurement: After the eigen-
values \; have been encoded in the c-register, a controlled
rotation is performed on the single ancilla qubit, which is also

2In quantum mechanics, the time evolution of a state can be performed
by applying the operation U = exp(iHt), H being the Hamiltonian of the
system. In general, any unitary matrix U can be written as U = exp(i¢A).
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controlled by the c-register. This rotation is equivalent to an
RY gate, and it transforms the ancilla qubit from |0), to the
superposition:

“

The constant C is, thereby, chosen to maximize the probability
of measuring the state |1),. After that, the ancilla qubit is
measured. If the measurement result is |0)4, the result is
discarded, and the circuit must be rerun. If |1), is obtained, the
state has been designed so that the desired component )\i_lbi
appears in the coefficients of the quantum state of the circuit
[7].

4) Inverse Quantum Phase Estimation (IQPE): Uncompu-
tation is required because after the controlled rotation, the b-
register and c-register are entangled, and this entanglement
prevents obtaining the correct answer upon measurement. This
disentangling is performed by using IQPE, a circuit composed
of applying Quantum Fourier Transform (QFT) to the clock
qubits, followed by applying the inverse controlled rotation
with UT = exp(—iAt), and finally Hadamard gates. The
combined effect of these operations disentangles the b-register
from the clock qubits, returning the clock qubits to the |0)®"



state. The final state |¥g) has the solution |z) stored in the b-
register, unentangled from the now-reset clock and measured
ancilla qubits [7].

C. Limits of the algorithm

Up until now, the HHL algorithm has been presented as a
promising and ideal quantum algorithm for solving systems
of linear equations. Unfortunately, there are some very
limiting factors to the algorithm, which drastically reduce
the range of possible use cases and leave only relatively few
suitable applications for HHL. Thus, as argued in [8], defining
HHL as a general solving algorithm for linear systems of
equations is actually not entirely correct. In the following,
these arguments, as well as some aspects of the error analysis
of HHL, will be discussed in detail.

Whereby it is mentioned above that we have an exponential
speedup over the classical alternative of the LSP solving
algorithm, this actually does not hold for the readout of &,
which would be of order O(N). Thus, it is only possible to
use the algorithm’s result for limited statistical information
about &, or for further calculations such as the expectation
value of an operator, the matrix A, or simply a scalar product
with another state 7.

The reason for this is that the result obtained after applying
the algorithm is not the actual vector Z, but rather a quantum
state that approximately represents the desired vector Z [8].
Consequently, there is a not entirely negligible error that
occurs, whereby the main error source is the phase estimation
step [5].

Moreover, the aforementioned complexity of O(log(N))
firstly only accounts for the execution of the algorithm, and
secondly, it is actually a simplified representation. In reality,
it depends on the system’s condition number , the sparsity
s, as well as the desired (maximum) error €, as can be seen

in Eq. 5 [7].
o </{~s-log(N)>

€

®)

Thus, certain conditions for the matrix A must be fulfilled,
such as sparsity, robust invertibility, or being well-conditioned,

’\“A being
small defined by the ratio between the largest and smallest
eigenvalue of A [8]. If, in addition to that, amplitude
amplification is to be used, the overall runtime needs to be
multiplied by an additional factor of O(k) [5].

which also implies the aforementioned

In addition to all that, according to [8], it is possible
that state preparation might scale polynomially with the
vector’s dimension N. The same problem might occur
for the unitary transformation, which does not necessarily
scale logarithmically with the matrix’s dimension N. This,
however, would be a problem that all quantum algorithms
need to address first, as state preparation is a fundamental
requirement for any quantum algorithm.

For a numerical example and step-by-step walkthrough to
understand the in closer detail, I again refer to [7].
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IV. REFERENCE IMPLEMENTATION AND RESULTS

In the following, two reference implementations are pre-
sented to show the applications of the HHL algorithm in
a more realistic scenario: one provided by Classiq [9], an
Israeli quantum software company founded in 2020, and
one based on Cirq [10], an open-source quantum computing
framework developed by Google for designing, simulating,
and running quantum circuits on near-term quantum hardware.
Both implement different additional methods for applying the
HHL algorithm efficiently and compare them to the classical
alternative and the naive quantum algorithm. This section aims
to show that, firstly, additional research is possible in order
to use the algorithm more efficiently. Secondly, it provides a
deeper understanding of what is possible with this algorithm.

A. Classiq

2.0 1 "
‘ Classical solution x (Reference) .
1.8 [ Quantum solution 1 (Exact Sim.)
A Quantum solution 2 (Approx. Sim.)
S 1.6
f
£
o 1.4
()
S 1.2
(V]
>
G 1.0 4
g
0.8 .
0.6 '
0.4 +— : : :
Xo X1 X2 X3

Index of solution vector i

Fig. 2. Comparison of the Classical HHL Solution to the quantum solution
with and without approximation of the Controlled Unitary gates of the QPE
step.

The distinctive aspect of this implementation is the direct
comparison of two quantum-mechanical approaches for real-
izing the QPE step of the HHL algorithm, in contrast to the
classical solution of linear systems. In the first approach, the
controlled unitary operators required for the QPE step from
the c to the b register are simulated exactly. In particular, the
time-evolution operator

U(t) = e At (6)

is implemented without approximation. However, this exact
simulation becomes increasingly demanding as the system
size grows, since the Hamiltonian H generally acts on a
Hilbert space whose dimension scales exponentially with the
number of qubits. As a consequence, the construction and
simulation of the corresponding unitary operators quickly
become computationally intractable.

To mitigate this issue, the Suzuki—Trotter expansion [11]
is employed as an approximation scheme and analyzed as



an alternative realization of the time-evolution operator. The

Hamiltonian is decomposed into a sum of non-commuting
terms,

m

H=Y"

Jj=1

H (N
which allows the unitary evolution to be approximated by a
product formula. In the first-order (Lie-Trotter) decomposi-
tion, the time-evolution operator is approximated as

T

e~ iHE ﬁ o—iHit/r (8)
j=1
where r denotes the number of Trotter steps.

The approximation error of the first-order Suzuki—Trotter
expansion (’)(g) Consequently, increasing
the number of Trotter steps r systematically reduces the
approximation error at the cost of an increased circuit depth.

scales as

Index \ Classical ~ Quantum (exact)  Quantum (approx.)

0 0.50 0.51 0.50

1 0.83 0.84 0.85

2 0.46 0.52 0.55

3 1.97 1.93 1.92
TABLE 1

COMPARISON OF THE CLASSICAL SOLUTION WITH CORRECTED QUANTUM
SOLUTIONS ROUNDED TO THE SECOND NUMBER AFTER THE COMMA FOR
CLARITY REASONS.

Fig. 2 compares the exact unitary implementation with the
Suzuki-Trotter approximation in terms of numerical accuracy
and computational complexity for increasing system dimen-
sions. Tab. IV-A presents the rounded numbers of the resulting
vector’s components used in the fig. 2 for a more accurate
analysis of the approximation’s impact.

B. Cirg

The Cirq implementation follows a different approach and
aims to improve the accuracy and success probability of
the quantum algorithm by employing a technique known as
amplitude amplification [12]. Rather than relying solely on
a direct implementation of the HHL circuit, this approach
enhances the probability of measuring the desired solution
state by iteratively amplifying its amplitude in the quantum
state space. Amplitude amplification can be understood as a
generalization of Grover’s search algorithm and operates by
alternating between reflections about the target subspace and
the initial state [12]. In the context of the HHL algorithm, this
technique is used to increase the probability of successfully
post-selecting the ancilla qubit in the desired state after the
controlled rotation step, which encodes the inverse eigenvalues
of the system matrix as can be seen from eq. 4. Within
Cirq, this strategy is implemented by explicitly constructing
the corresponding reflection operators as quantum circuits and
applying them iteratively. This leads to a higher overall success
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Comparison of Expected and Simulated Pauli Expectation Values

0.4 I Simulated (Without AA)
I Expected (Classical)
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Fig. 3. Comparison of the expectation values of the Pauli observables X, Y,
and Z obtained from the HHL algorithm. The expected (gray) values are shown
alongside the numerically estimated values from simulations with (blue) and
without (red) amplitude amplification.

probability compared to a single-shot HHL execution, thereby
reducing the number of required circuit repetitions.

Pauli Operator ‘ Expected Value No AA  With AA

X 0.14 0.13 0.10

Y 0.41 0.42 0.39

z -0.90 -0.90 -0.89
TABLE II

EXPECTATION VALUES OF PAULI OPERATORS WITH AND WITHOUT
AMPLITUDE AMPLIFICATION (AA)

Fig. 3 shows that while the expectation values are not sys-
tematically altered by amplitude amplification, the increased
success probability leads to improved statistical stability and
closer agreement with the expected results. Tab. IV-B presents
the rounded numbers of the resulting observable’s values used
in fig. 3 for a more accurate analysis of the presented method’s
impact.
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© © o o o o o
N w =y (6, o ~ [o0]

o
i
)
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Fig. 4. Success probability per single execution of the HHL circuit with and
without amplitude amplification.



Fig. 4 illustrates that amplitude amplification significantly
increases the probability of successful post-selection, thereby
reducing the number of required circuit repetitions.

V. CONCLUSION

Throughout this seminar paper, the powerful HHL
algorithm has been analyzed. It is shown to represent an
efficient quantum mechanical approach to solving LSP by
applying quantum mechanical methods (i.e., gate operations)
to exploit the quantum advantage. The HHL algorithm is,
thus, known for promising an exponential speedup over the
best-known classical method, establishing it as a key tool for
implementing scalable quantum machine learning models,
which frequently rely on linear algebraic operations.

However, it could be seen that the HHL algorithm is not
a general solving algorithm for all LSP, as several limiting
factors drastically reduce its range of possible use cases. The
exponential speedup does not hold for reading out the full
solution vector |z), which scales as O(N). Therefore, the
result can only be used for limited statistical information
or for further calculations. The O(log(N)) complexity is
shown to be a simplification; in reality, the runtime is
found to depend on several factors and requires the matrix
A to fulfill the aforementioned conditions. Furthermore,
fundamental requirements like state preparation and the
unitary transformation may scale polynomially with the
dimension N, which poses a general challenge for all
quantum algorithms.

Despite these inherent limitations, the HHL algorithm and
its underlying principles remain a powerful area of research
for quantum computation. Potential applications are found in
fields requiring high-speed linear algebra. For instance, the
method is a promising candidate for application in tensor
network simulations, e.g., for Many Body Simulation in com-
putational physics, especially helpful for ground state search
of Hamiltonians. In these complex physical systems, where
the computational complexity of interacting quantum states is
immense, the logarithmic scaling of HHL could drastically
reduce calculation times for determining system properties.
Furthermore, the principles of efficient matrix computation are
highly relevant for High-Performance Computing. Given the
role of HHL in rapidly solving linear systems, its general-
ization or adaptation could lead to quantum subroutines that
accelerate the large-scale linear algebraic processes central to
HPC tasks, thereby providing a significant advantage in diverse
areas such as fluid dynamics, structural analysis, and financial
modeling.
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Abstract—Linear differential equations (LDEs) play a promi-
nent role across a wide range of scientific disciplines. Con-
sequently, understanding novel techniques for solving LDEs,
such as methods relying on quantum algorithms, is a valuable
endeavor. This work presents a pedagogical review of quantum
LDE solvers based on two different paradigms: Quantum Linear-
System-Solving (QLSS) and Time-Marching. The goals of this
review are (a) to introduce quantum LDE solvers to a broader
audience, (b) to explicitly analyze the sources of quantum speed-
ups and limitations of these methods, and (c) to give practical de-
cision guidance for choosing between QLSS and Time-Marching
based on problem characteristics.

Index Terms—Quantum Algorithms, Differential Equation
Solvers, QLSS, Hamiltonian Simulation

I. INTRODUCTION

Differential equations (DEs) are ubiquitous in disciplines
ranging from plasma physics and aerodynamics to molecular
biology and financial risk analysis [1]. DEs provide a concise
manner for expressing the evolution of quantities through
space or time, making them a valuable tool for describing
evolution processes and scientific laws. However, only the
simplest differential equations are analytically solvable. For
this reason, methods to approximate the solutions to DEs
efficiently are widely studied.

A recently explored category of such methods are DE
solvers based on quantum algorithmic subroutines, promising
potential speed-ups outside the reach of classical alternatives
[2]-[8]. Although methods for solving non-linear differential
equations have been proposed [9], [10], quantum methods
are most intuitively employed to linear differential equations
(LDEs). For this reason, the present review focuses on two
promising quantum paradigms for solving LDEs: Quantum
Linear-System-Solving (QLSS) and Time-Marching.

Understanding how these two different methods work re-
quires bridging classical numerical methods, quantum encod-
ing techniques, and primitive quantum algorithmic subrou-
tines. The purpose of this paper is to concisely review and
connect the primitives employed by quantum LDE solvers in
order to form an intuition for both QLSS and Time-Marching
approaches. Moreover, the speed-ups promised by QLSS and
Time-Marching approaches will be explained, clarifying which
mechanisms might enable such speed-ups and also which
limitations might cause them to vanish. Afterwards, to support
the practical application of the presented quantum solvers, a
decision framework will be presented, showing under which
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conditions each of the two paradigms is better suited. Finally,
open challenges and possible developments in the space will be
discussed, culminating in possible avenues for future research.

II. BACKGROUND

A. (Linear) Differential Equations

Before introducing the building blocks of the quantum
algorithms discussed in this study, it is worthwhile to revisit
DEs. In general, a DE is an equation that connects one or
more unknown functions with their derivatives [11]. It is
usual to distinguish between two classes: partial differential
equations (PDEs) and ordinary differential equations (ODEs).
PDEs contain unknown multi-variable functions related to
their partial derivatives, while ODEs deal with single-variable
functions related to their derivatives.

Both PDEs and ODEs can be subcategorized further as non-
linear or linear differential equations. As the name suggests,
LDEs can be written as a linear combination of derivatives.
Linear PDEs can be compactly expressed as follows:

Lu = f(xq, .. @)

ﬂx@.

Here, u is an unknown function of interest, which could, for
instance, model the evolution of a physical quantity through
temporal or spatial dimensions, or, more generally, through
d different dimensions denoted by zi,...,z4. L is a linear
differential operator mapping u to a linear combination of
its partial derivatives with d variables. Finally, f(x1,...,xq)
is a known function often called the source term or forcing
function. To solve an LDE, a function v must be found, so
that when L acts on this function, the forcing function f is
obtained.

In the case where u is a single-variable function (d = 1),
for a linear ODE containing an n-order derivative, we obtain
a linear differential operator of the following form using
ag . . . a, functions of x:

d? dr

d
L:ao(w)+a1(x)7 @—F—f‘an(iﬂ)%

dx + ax(2)

)

Finally, to obtain a unique solution to an LDE, one must also
specify appropriate boundary conditions, or initial conditions
in the case of time-dependent problems. These conditions
constrain the solution at specific points in the domain. For



example, boundary conditions for a second-order ODE on a
domain [a, b] may take the form:

3)

u(a) =, u(b) =B,

where a and (3 are specified constants.

B. Solving Linear Equations Classically

While analytical solutions provide an exact description of
the system modeled by the DE of interest, many DEs of
interest, such as the Navier-Stokes and Schrddinger equations,
do not have a closed-form solution in general. Approximate
numerical methods have therefore become indispensable tools
for solving DEs, resulting in a rich corpus of literature
discussing these methods [12].

A fundamental element of many such numerical methods
is the discretization of the continuous domain of the DE. The
unknown function u(x) can be discretized into a grid of N
points with spacing h, producing a vector of the values of
the function at the grid points, u € R". Since the DE must
be satisfied at each grid point, we obtain N equations with [N
unknowns. Concretely, the derivatives appearing in the DE can
be approximated at each grid point using finitie differences.
For example, the first derivative can be approximated for a
small spacing h as g—g ~ M , relating the derivative
at each point to the function at neighboring points. Finite-
difference methods can similarly be applied to approximate
higher-order derivatives.

For an LDE, these finite-difference approximations are
linear combinations of the unknown values of w at the grid
points. The resulting system takes the form Au = b, where
A € RYXN encodes the discretized differential operator L
and the boundary conditions, while b encodes the discretized
forcing function f and the concrete values of the boundary
conditions.

To find the solution vector u approximating the unknown
function at the grid points, assuming A is an invertible matrix,
the system can be inverted producing u = A~!b using
Gaussian elimination or full-inversion methods [13]. As more
accurate solutions require larger N, the computational cost
of inverting A grows rapidly and becomes the computational
bottleneck for many classical DE solvers. The first quantum
method discussed later in Section IV-A of this review review,
QLSS [6], [14], directly tackles this limitation.

The approach described above, discretizing the full domain
and solving the resulting linear system, is sometimes referred
to as direct approach for solving LDEs. A different popular
classical approach, particularly suitable for time-dependent
DEs, is Time-Marching. Again, the domain of the LDE of
interest is discretized, in this case into a grid of time steps
0 =ty <ty < ... <ty = T. Starting from an initial
condition at tp, the solution at each subsequent time step is
calculated based on previously obtained values.

Time-Marching variants include one-step methods, such
as the Euler method [15] and Runge-Kutta methods [16],
which compute the solution at ;41 using only information
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from ¢;, and multi-step methods, such as Adams methods,
which use information from several previous time steps. The
classical Time-Marching paradigm forms the basis of the
second quantum method [8] discussed in Section IV-B of this
review.

C. Quantum Primitives

1) HHL: Introduced by Harrow, Hassidim and Loyd, the
HHL algorithm promises an exponential speed-up for solving
linear systems of equations under certain conditions [14]. For
a system Au = b, HHL is able to compute a quantum
state |u) encoding the solution vector u with logarithmic
complexity in the size of u. However, this speed-up can
vanish in practice, as quantum state tomography [17] must
be employed to reconstruct the full classical solution u from
|u), a step with exponential complexity with respect to the
size of u in most cases [18].

In addition to this challenge, HHL requires the state |b)
corresponding to the forcing function vector b to be prepared
on a quantum computer, which is difficult in many cases.
Furthermore, the effectiveness of HHL also depends on the
sparsity and the condition number of A!, both of which are
influenced by the order of the LDE of interest. The complexity
of HHL with respect to sparsity and condition number of A
has been greatly reduced through modifications to the original
version of the algorithm [20], making it a powerful subroutine
for tasks like the one discussed in the present work [6].

2) Hamiltonian Simulation: The first proposal of quantum
computers is often attributed to Feynman, who recognized the
intrinsic limitations of classical computers in simulating quan-
tum dynamics [21]. Feynman coined the term of Hamiltonian
simulation [21], which involves efficiently approximating the
evolution of a quantum system. Concretely, the evolution of a
quantum state |¢) is described by the Schrodinger equation

“

d

— () = —iH|Y(t
SI0(0) = —iHIb (),
where H is a Hermitian matrix (i.e. H = H') governing the
evolution, known as the Hamiltonian operator. To calculate the

state of |¢)) at a time ¢, the unitary evolution

(1)) = e [ (0)), 5)

can be implemented using a sequence of quantum gates acting
on an n-qubit system initialized with the state |¢(0)) [22].
A common approach to achieve this is the use of product
formulas, also known as Trotter-Suzuki decompositions [23].

If the Hamiltonian can be decomposed as H = H; + Hy +
iHT

... Hy with k£ € N, the evolution operator U = e~ can
be approximated as:
U~ (e—iHlT/re—ngT/r o e—z'HkT/r)T . )

'In numerical analysis, the condition number of a function measures how
much the output value of the function can change for a small change in the
input argument. The condition number associated with the linear equation
Au = b gives a bound on how inaccurate the solution u will be after
approximation [19].



In this manner, U can be implemented as a sequence of
evolution steps, where each evolution step e “#xT/7 is a
composition of quantum gates. The length of the sequence,
given by r, controls the accuracy of the approximation.

The efficiency of Hamiltonian simulation and the parallels
it has with classical Time-Marching make it a natural choice
as a primitive for solving LDEs quantumly. When an LDE
can be mapped to a Schrodinger-type equation, direct applica-
tion of Hamiltonian simulation techniques becomes possible.
However, general LDEs involve non-Hermitian A matrices,
requiring additional techniques such as block encoding [24].
Furthermore, Hamiltonian simulation depends on long se-
quences of imperfect quantum gates, leading to vanishing
success probabilities for large 7. Solutions to these challenges,
making this quantum primitive practically relevant for LDE
solving, will be discussed in Section IV-B.

III. RELATED WORK

The application of quantum algorithms to DEs and LDEs
in particular has developed along two main directions building
upon the two primitives introduced in the previous section.
On the one hand, solvers exploiting the HHL algorithm and
its variants, which fully invert the discretized LDE in a
single step. On the other hand, solvers following the paradigm
of Hamiltonian simulation, which propagate quantum states
through time, analogously to classical Time-Marching.

A. QLSS Approaches

Following the introduction of the HHL algorithm [14],
Berry et al. [3] first proposed a protocol to encode linear
ODE:s as sparse linear systems which could be efficiently tack-
led combining an HHL subroutine with high-order multistep
methods [25]. Subsequent work [26]-[28] further improved
the efficiency of QLSS approaches, achieving the current state
of the art complexity for such algorithms. Applications of
QLSS to specific LDEs have been extensive, including work
on Poisson’s equation [29], Schrodinger’s equation [28], and
more general second-order elliptic equations [4].

B. Time-Marching Approaches

Fang et al. [8] presented the first effective protocol for
Time-Marching quantum LDE solvers. Making use of Singular
Value Amplification [30], Fang et al. were able to overcome
the problem of exponentially vanishing success probabilities
[8], a fundamental obstacle for iterative quantum methods.
A very recent addition close to this line of research is the
Schrodingerisation technique [7], which makes it possible to
tackle the equally challenging and practically relevant class of
stochastic differential equations on a quantum device [31].

C. Alternative Approaches

In addition to QLSS and Time-Marching approaches, sev-
eral other quantum methods have been explored for solving
DEs. For instance, one of the first quantum methods for this
task used Grover’s algorithm [32], resulting in a quadratic
speed-up over classical methods under certain conditions [2].
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A similar method based on amplitude estimation was later
proposed for the Navier-Stokes equations [33].

Alternatively, variational algorithms [34] have been pro-
posed as a subroutine capable of solving DEs by mapping the
solution to the ground state of a Hamiltonian describing the
equation of interest [35]. For nonlinear DEs, methods based
on the technique of Carleman linearization [5] have emerged
as a promising technique.

D. Reviews and Comparative Analyzes

As is the case for the present review, different authors have
previously explored quantum DE solvers from a pedagogical
perspective. Broeckmann [6] provided a careful treatment of
QLSS applied to Poisson’s equation. Pesah [36] offered a
comprehensive classification of quantum PDE solvers, with
a special focus on the complexity of different steps of both
QLSS approaches and Hamiltonian simulation approaches.
Linden et al. [37] performed a rigorous comparison of quan-
tum and classical methods for the heat equation, establishing
precise conditions for quantum advantage.

This review provides a focused pedagogical comparison
between QLSS and Time-Marching paradigms, explicitly ana-
lyzing quantum speedup sources and limitations while offering
practical decision guidance based on problem characteristics.

IV. QUANTUM PARADIGMS FOR SOLVING LDES

Having introduced relevant classical and quantum build-
ing blocks, this section will discuss two central quantum
paradigms for solving LDEs in detail. Both share a repre-
sentational strategy: the solution vector u = (u1,...,uy)?,
where NN is the number of points in the discretized grid, is
encoded in the amplitudes of a quantum state,

1 N
fall 2

compressing N values into O(log N') qubits. This compression
underlies the potential for quantum speedup, but encoding
the result in a quantum state implies the need for quantum
tomography [17] in order to recover the full classical solution.

(N

A. QLSS Paradigm

Conceptually, QLSS follows the direct paradigm discussed
in Section II: discretize the entire problem first, then solve
the entire resulting linear system at once. This section will
concisely describe the main components of QLSS approaches
for solving LDEs.

1) Encoding LDEs as Linear Systems: Consider a linear
PDE such as Poisson’s equation, Au = f, defined on a
continuous d-dimensional domain ). Here, A represents the
Laplacian operator:

B 0%u . 0%u T 0%u
- Oz} 03 0x?’
where z1,...,z4 € Q. As discussed in Section II, classical
numerical methods approximate {2 with a discrete grid of N

Au (®



points. The unknown function u is represented by a vector
u € RY of its values at these grid points. Similarly, the
forcing function f is represented by b € RY, while the
differential operator A becomes a matrix A € RY*V acting
on u, resulting in the linear system Au = b.

To illustrate how A 1is constructed, consider the one-
dimensional case % (x) on [0,1] with boundary con-
ditions u(0) = «, u(l) = B. Discretizing the domain into
N interior grid points with spacing h = ﬁ, the second
derivative at each point x; can be approximated as

2
dx?

T

o Uim1 = 2u + Ui

- ©)

Since this expression relates each unknown u; to its neighbors,
applying it to all N grid points produces a tridiagonal matrix:

-2 1 0 0
, 1 -2 1 0
A:ﬁ 0 1 -2 0 (10)
: 1
0 0 1 -2

In order to store and manipulate the solution of the LDE on
a quantum device, such a discretization is performed [3]. An
important remark at this stage is that the discretization and the
encoding on the quantum device are not always trivial steps,
and their complexity can even negate the speed-up achieved
by QLSS-based methods [36].

2) Applying HHL: Once the differential equation has been
formulated as a linear system of equations, the HHL algorithm
[14], or any of its variants [28], can be applied as a solver for
the system. In order to do so, b and A must be encoded in
a quantum circuit. First, the state |b) is encoded analogously
to the final solution state |u) in Eq. (7). To encode A, the
Hamiltonian simulation method can be employed, analogously
to the simulation of the Hamiltonian operator H in Eq. (4)
through the evolution operator U in Eq. (5) and (6). To con-
struct such an evolution operator, which can be implemented
as a sequence of quantum gates performing e*4*, A must be
Hermitian (or embedded into a larger Hermitian matrix)

0 A
E

To efficiently solve the system of linear equations of interest,
HHL exploits a fundamental property of Hermitian matrices:

if A is Hermitian, it can be represented in its eigenbasis as
a diagonal matrix, with its main diagonal consisting of its

Y

eigenvalues A\1,..., An:
A O 0
0 A 0
A= . . (12)
0 O AN

Inverting the matrix therefore reduces to inverting its eigen-
values, which can be achieved by replacing each \ with
1/A. While classical algorithms must compute eigenvalues
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explicitly, HHL extracts the eigenvalues of A via Quantum
Phase Estimation (QPE)? [39].

As visible on Fig. 1, the eigenvalues \,..., Ay are first
encoded in an auxiliary “clock” register through a QPE block
which contains the encoding of A. To invert the eigenvalues,
HHL then performs a rotation to an ancilla qubit, controlled
by the clock register value. If the angle is chosen so that for
each A, sin(f(\)/2) = 1/, each amplitude of the state |1) in
the ancilla qubit is proportional to each corresponding .

After this operation, the quantum state contains the inverted
eigenvalue information. To disentangle the clock register from
the input and the ancilla, the Hermitian QPE' is applied,
reverting the first QPE operation. Finally, measurement and
post-selection are applied on the ancilla qubit, keeping only
the outcomes where |1) was observed, which correspond with
the cases where the ancilla encoded 1/\. By doing so, the
original input register collapses to the desired |u), which is
proportional to the solution to the LDE.

As previously mentioned, the efficient application of HHL
requires A to be sparse and well-conditioned, and the right-
hand side b to be efficiently preparable as |b) on a quantum
computer. For many LDEs, these requirements are naturally
satisfied. The discrete Laplacian in Eq. (10), for instance,
is sparse, as each grid point couples only to its neighbors.
However, some LDEs, particularly those those with time
dependent, non-smooth coefficient matrices A, are challenging
for QLSS approaches [8]. The following section introduces a
paradigm which has proven more effective for such cases.

B. Time-Marching Paradigm

While QLSS methods solve for the entire solution at once,
Time-Marching methods take a fundamentally different ap-
proach: propagate the quantum state encoding the solution
forward through time, step by step. In this section, we highlight
the central ideas of Time-Marching, drawing from [8].

1) Evolving a State through Time: Mirroring classical ex-
plicit time-stepping schemes, Time-Marching is particularly
natural for initial value problems and time dependent LDEs.
For instance, consider the initial value problem

d

V@) = A@Q@),  [¥(0)) = [¢o), (13)
which arises from the discretization of a time dependent LDE,
given by a time dependent matrix A (¢). This is a similar form
to the one encountered in Eq. (4). Recall that the Hamiltonian
governing the system was approximated by the evolution
operator U by composing many short-time propagators of
the form e “#7/" in the Trotter-Suzuki formula (6). This is
precisely a time-marching approach: the total evolution time
T is divided into small steps ¢ = T'/r, and the solution is
propagated forward through each step sequentially.

Concretely, adopting the notation from [8], the temporal
domain of A, denoted [0, 7], must be discretized into L time

2A more detailed analysis and explanation on QPE, as well as many other
quantum algorithms including HHL can be found in [38].



(4) Post-select

Ancilla |0) — Ry(0) — AN—

o e e o
Clock [0)" —\—— : : :
n 1 : 1 :
| QPEa | | QPEAT |

Input [b) ——— | } | Ju)

o ! G !
(1) Extract A (3) Uncompute

Fig. 1. Quantum circuit for the HHL algorithm. The input register is prepared in the state |b) encoding the source term of the LDE. (1) QPE encodes the
eigenvalues A\ of A into the clock register. (2) A rotation controlled by the clock register acts on the ancilla qubit, encoding 1/X into the amplitude of its
|1) component. (3) Inverse QPE “uncomputes™ the clock register, disentangling it form the ancilla and input qubits. (4) Finally, measuring the ancilla and

post-selecting on |1) produces the solution state |u).

steps top < t1 < --- < tr = T. The solution can then be
propagated through each time step via short-time propagators
of the following form:

=, = Telua A0, (14)

where 7 denotes the time-ordering operator®. These propaga-
tors are the generalization of the evolution operator U = e~ *H?
from Hamiltonian simulation to non-Hermitian coefficient
matrices. The final solution is obtained by composing all
propagators:

|Y(T)) = ELEL—1 - - Z281[¢0)- (15)
For Hamiltonian simulation, each =; is unitary, resulting in
a straightforward composition. However, many physical sys-
tems, such as Poisson’s equation as discussed in the previous
section, produce non-Hermitian coefficient matrices, resulting
in non-unitary propagators.

2) Non-Unitary Propagation: Since quantum operations
must be unitary, non-unitary propagators are implemented via
block encoding, embedding =; into a larger unitary, as was the
case for A in Eq. (11). In practice, block encoding introduces
a probabilistic error into the application of the propagator, as
the successful application of the block encoded propagator
requires measuring an ancilla qubit in the correct state. Over
L time steps, these probabilities with p < 1 compound
multiplicatively, leading to an overall success probability that
decays exponentially with the evolution time. This exponential
decay was recognized early as a fundamental obstacle to
quantum Time-Marching [3].

3The time-ordering operator 7  ensures that when the exponential is
expanded as a series, operators at later times appear to the left. This is
necessary when A(t) does not commute with itself at different times. For
time-independent A, or when A(¢) commutes with itself at all times, the
propagator simplifies to the matrix exponential =; = eAlti=ti—1),
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3) The Solution through Uniform Singular Value Amplifica-
tion: A central contribution in [8] was to apply the technique
of Uniform Singular Value Amplification (USVA) to restore fa-
vorable success probabilities. Intuitively, the root cause of the
exponential decay is that standard block encoding introduces
more normalization than necessary, i.e., the normalization
factor is larger than the norm of the propagator ||Z;||. USVA
uses the Quantum Singular Value Transformation primitive to
construct a new block encoding whose normalization matches
IZ1]], thereby increasing the success probability at each step.

After applying USVA at each time step, the success prob-
ability no longer suffers from the artificial exponential decay
introduced by block encoding. Instead, it reflects only how
much the approximation intrinsically deviates from unitary
evolution, quantified by the amplification ratio

_ i =)
TN

For unitary dynamics (e.g., Hamiltonian simulation), @ = 1
and the algorithm succeeds deterministically. For dissipative
systems or solutions that decay over time, () can be larger.

In great measure due to the adaption of the USVA sub-
routine, superficially discussed in this section, Time-Marching
on quantum hardware has proven an extremely flexible and
promising paradigm for solving a variety of DEs [8].

Q (16)

C. Selecting a Paradigm: Decision Guidance

Having presented both paradigms in detail, a natural ques-
tion arises: given a specific DE of interest, which approach
should one choose? The answer depends on several problem
characteristics, which are systematized in this section. Con-
cretely, five decision factors play an important role.

Time-dependence of coefficients. The most immediate
distinguishing factor is whether the coefficient matrix A(t)
varies with time. QLSS methods are most naturally suited
to time-independent problems, where the entire domain can



be encoded in a single linear system. While time-dependent
problems can be handled through a multi-step formulation, this
increases the system size. Time-Marching, by contrast, handles
time-dependent coefficients natively, updating the evolution
operator at each step without reformulating the problem.

Smoothness requirements. QLSS methods based on spec-
tral decomposition typically require the coefficient matrix to
be diagonalizable and for higher accuracy, smooth. Time-
Marching achieves high accuracy under weaker regularity con-
ditions, requiring only bounded variation instead. For problems
with discontinuous coefficients, such as those arising from
abrupt material property changes, Time-Marching may be the
only viable option.

Character of the evolution. The amplification ratio @
plays a central role in Time-Marching complexity. When
the evolution is nearly unitary (e.g., Hamiltonian simulation
or mildly dissipative systems), () ~ 1 and Time-Marching
is highly efficient. For strongly non-unitary evolution where
the solution grows or decays significantly, () can become
large, favoring QLSS methods that depend on the condition
number k instead. However, it must ve noted that the relation
between the amplification ratio and the condition number have
not been studied comprehensively. Furthermore, the length of
the evolution time can play a decisive role. Time-Marching
scales less favorably in terms of the evolution time, and
more propagation steps might pose a challenge due to the
multiplicative success probabilities, even if the propagators are
close to unitary.

Problem structure. QLSS methods can exploit special
structure in the discretized differential operator. Kronecker
sum decompositions, as in the Poisson equation, or sparsity
patterns enable more efficient implementations as shown in
[6].

Output requirements. Perhaps the most critical factor is
what information is needed from the solution. Both paradigms
produce a quantum state encoding the solution in its ampli-
tudes. Extracting the full classical solution requires quantum
state tomography with exponential complexity with respect
to the dimension of the problem, which can eliminate any
quantum advantage. However, if only partial information is
needed, such as expectation values, samples, or the solution
in a small region, the quantum speedup can survive. This
consideration applies equally to both paradigms.

A summary of the criteria can be found in Tab. I. A dash
indicates that the paradigm is not ideally suited for the given
condition, a check mark indicates that the paradigm is well
suited under the given criterion, and a check mark followed by
a plus sign indicates that the paradigm is particularly effective
the criterion.

V. DISCUSSION AND CONCLUSION

To conclude this review of quantum methods for solving
LDE:s, this section presents a summary of the key mechanisms,
discussing sources and limitations of quantum advantage, and
outlining directions for future research.
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TABLE I
CHOOSING QLSS vs. TIME-MARCHING FOR QUANTUM LDE SOLVING.

Criterion QLSS  Time-Marching
Time-dependent problems v v+
Non-smooth A (¢) - v

Long evolution time T' v+ v
Nearly unitary dynamics v v+
Highly non-unitary dynamics v -

Full output required - -

A. Summary of Mechanisms

The QLSS paradigm operates by discretizing the entire
differential equation into a single linear system Au = b,
subsequently applying the HHL algorithm to prepare a quan-
tum state encoding the solution. The key primitive is QPE,
which extracts eigenvalue information and enables matrix
inversion through controlled rotations. However, in order for
QPE to work, the system must first be encoded in the quan-
tum hardware, requiring both amplitude and block encoding.
Implicitly, Hamiltonian simulation is also required as part of
the QPE primitive. Finally, a post-selection and measurement
mechanism is required to produce the state encoding the
solution.

The Time-Marching paradigm instead propagates the quan-
tum state forward iteratively. The paradigm is closely related to
Hamiltonian simulation, and can be implemented analogously
if the coefficient matrix is Hermitian or anti-Hermitian. In
cases where the coefficient matrix is not unitary, block en-
coding must be utilized, eventually introducing an excessive
normalization of the propagators, resulting in vanishing suc-
cess probabilities. However, this challenge has recently been
overcome through USVA, which restores favorable success
probabilities at each step.

B. Sources of Quantum Advantage

At a low level, both paradigms derive their potential
speedups from the same fundamental source: the ability to
encode N-dimensional solution vectors in O(log N) qubits.
This logarithmic scaling in the representation is what enables
potential polynomial or even exponential speedups over clas-
sical methods that must explicitly store N numbers.

For QLSS methods, the speedup manifests through the HHL
algorithm’s O(x?log(N)) complexity for well-conditioned,
sparse systems. This ultimately comes from the ability to ex-
tract eigenvalues effectively through QPE. For Time-Marching,
the speedup arises from efficient Hamiltonian simulation tech-
niques that propagate quantum states polynomially in time T
and the amplification ratio (), rather than exponentially in the
system dimension.

However, these speedups depend on several conditions:
efficient state preparation, favorable problem structure (spar-
sity, condition number), and crucially, the ability to extract
useful information from the quantum solution state without
full reconstruction. Furthermore, it must be mentioned that
subroutines employed by both algorithms, QPE and QSVT
respectively, are extremely expensive in terms of required



quantum resources, considerably above the current state-of-
the-art hardware.

C. The Measurement Bottleneck

Perhaps the most significant intrinsic limitation shared by
both paradigms, as well as many other quantum algorithms in
general, is the measurement bottleneck. Both methods produce
a quantum state |u) whose amplitudes encode the solution.
Extracting the full classical solution vector requires quantum
state tomography, with an exponential complexity in most
cases [18], eliminating any quantum advantage gained during
the solving phase.

This observation suggests that quantum LDE solvers are
most promising in scenarios where the full solution is not
required. Several such scenarios exist in practice. In general,
if only specific expectation values of observables of intererest
(u|O|u) are needed, these can be estimated efficiently through
repeated measurements. Furthermore, for quantum-to-quantum
pipelines, when the solution of a differential equation serves
as input to another quantum computation, |u) can be used
directly without classical readout. Such pipelines are particu-
larly relevant in quantum chemistry and quantum simulation
applications. Similarly, when only the solution in a small
region is needed, amplitude amplification can be used to
extract this information efficiently.

D. Future Directions

In spite of the limitations discussed, the methods presented
in this review are of high scientific and economic relevance.
The overview of the methods presented opens a variety of
avenues for future work.

First, as discussed in Section I, DEs are present in a wide
variety of scientific and technological domains. The deci-
sion framework presented in Section IV-C should be applied
systematically to DEs across scientific domains. Reaction-
diffusion systems in chemistry, the Boltzmann equation in
kinetic theory and even the Black-Scholes equation in financial
risk theory (although the latter might require more powerful
methods due to its stochastic nature) present attractive test
cases. For each, careful analysis is needed to determine which
paradigm is better suited and whether end-to-end advantage is
achievable.

Another insight from the present review is the sometimes
ignored limitation that we referred to as “the measurement
bottleneck”. By encoding the solution in a quantum state,
the methods discussed in this review are limited to specific
questions. Mapping relevant questions to expectation values
of observables, or exploring quantum-to-quantum workflows,
remain promising and underexplored tasks.

Finally, it is worthwhile to insist on the possibility of
using quantum DE solvers to get full solutions to problems
of interest. In particular, a variety of efficient tomography
schemes has been developed in the last decades, such as
Matrix-Product-State [40] and Classical Shadow Tomography
[41], greatly improving the efficiency of “naive” full quantum
state tomography. Combining modern tomography approaches
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with quantum DE solvers might enable the path towards a
quantum advantage, even when seeking the full solutions to
DEs of interest.

E. Conclusion

Solving DEs is an impactful application of quantum algo-
rithms connecting numerical analysis, quantum information
theory, and scientific computing. The QLSS paradigm is
already a promising starting point for this goal, but recent
fundamental developments in the field, such as [8], which
enabled Time-Marching on quantum devices, hint at an even
greater potential for quantum DE solving.

The path to practical quantum advantage requires not only
algorithmic advances but also careful problem selection and
reformulation. By identifying applications where partial so-
lution information suffices, exploiting efficient tomography
techniques for structured solutions, and designing quantum-
native computational workflows, the promise of exponential
speedups for DE solving may eventually be realized. Until
then, the theoretical foundations laid by QLSS and Time-
Marching methods provide relevant groundwork for future
quantum scientific computing endeavors.
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Abstract—For many years there have been well known and
often used quantum algorithms in quantum computing, like
Shor’s Algorithm or Grover’s Algorithm. In 2019 a new frame-
work called Quantum Singular Value Transformation (QSVT)
was introduced by Gilyén et al. The idea was a framework to
simplify the construction of quantum algorithms. In this paper we
investigate this framework and how it influenced the development
of new algorithms. Based on ideas by Martyn et al. we answer
the question why QSVT can be seen as a grand unification of
quantum algorithms and therefore is a significant advancement
in quantum computation.

Index Terms—Quantum Computing, QSVT, quantum algo-
rithms

I. INTRODUCTION

Many problems have been solved using classical computing
for decades, long before quantum computing emerged. Quan-
tum computing introduces new methods for solving certain
problems that can not be solved with or are inefficient for clas-
sical computers. Additionally, for some problems which can
be solved using classical or quantum algorithms, the quantum
algorithms sometimes solve them more efficiently in terms of
runtime. One prominent example is the search problem, which
can be solved classically in O(N) time. In 1996 Grover’s
algorithm [1] showed an improvement to O(v/N) time when
using a quantum algorithm, which offers a quadratic speedup.
This algorithm was specifically constructed to solve the search
problem. One of the goals in developing new algorithms
in quantum computing is to have significant speedups when
compared to their classical counterparts. As [2] mentions, we
can see the same result for other algorithms, like ones for
quantum phase estimation [3] or Hamiltonian simulation [4].
Based on these ideas, [5] developed the Quantum Singular
Values Transformation (QSVT) to describe some of these
algorithms. They realized that these algorithms have similar
structures to a certain degree and searched for a framework
that could describe the algorithms. They built their framework
on the technique of quantum signal processing (QSP) [6] as
well as qubitization. [4]

In this paper, we closely follow the approach of [2] to ex-
plain why QSVT can be seen as a grand unification of quantum
algorithms. For this, in section II we first want to take a short
look at the general idea behind QSVT, as well as important
terms and definitions used throughout the paper. In section IV
we look at four different cases mentioned before: The Search
Problem in IV-A, the Eigenvalue Threshold Problem in IV-B,
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Fig. 1. Workflow of algorithm constructed with QSVT

the Phase Estimation in IV-C and the Hamiltonian Simulation
in IV-D. For each of these cases we will give simple examples
on how QSVT can construct an intuitive quantum algorithm
and why these are an improvement over already existing
algorithms. Following this, we can then answer the question,
why QSVT can be seen as a grand unification and what
influence it had on quantum computing in section V. In section
VI, we will then conclude the paper by giving a short summary
as well as an outlook on how we can further build on the
QSVT and its techniques.

II. BACKGROUND AND IMPORTANT TERMS

Before we look at the algorithms and answer the question,
if QSVT can be seen as a grand unification, we first give a
short overview over the functionality of QSVT as well as some
important terms and definitions used throughout the paper.

A. QSVT

As [5] describes, QSVT is developed as a framework for
quantum algorithms. It uses and combines the techniques of
qubitization and QSP. It uses a matrix as input and transforms
the eigenvalues or the singular values - depending on the func-
tions we want to apply - to reach the desired result. QSVT is
mainly used in two different ways. Since quantum algorithms
require unitary matrices to apply quantum operations, we first
take a given matrix A and encode it into a unitary matrix U.
QSVT can then apply functions to the matrix without having
to calculate the matrix first. In some algorithms - like the
search problem mentioned in section IV-A - QSVT can also
be used to directly encode the matrix, especially if handling
both steps together is more efficient. This also helps for the
second use: to construct a new quantum algorithm based on the
framework to solve a specific problem. If we prepare a matrix
using QSVT, we can then construct the algorithm by applying
different functions that solve the problem. An overview of the
workflow of an algorithm constructed with QSVT is given
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in figure 1. The dotted box marks the part that is needed in
every quantum algorithm that is built with this framework,
while the later part shows where the problem specific part is
implemented.

B. Ancilla qubits

Ancilla qubits are an important part which is used in QSVT.
These qubits are auxiliary qubits that are used to perform
certain operations. For example if we have an operation that
needs 3 qubits to be executed on, but we only have 2 qubits we
can use, we can add an ancilla qubit. This qubit allows us to
execute the operation without changing the context. Examples
for this are the quantum AND-operator and the quantum XOR-
operator. As we can see in figure 2 for the qubits a and b we
need an ancilla qubit - predefined as O - to calculate a A b.
The same works for @ XOR b as can be seen in figure 3. In
this case we could alternatively calculate it without the use
of an ancilla qubit like in figure 4, but here b will now store
the result of a XOR b and we will therefore lose the state
of the original qubit, while in the first case we can still use
both a and b for further operations and work with a XOR b
as well. That way ancilla qubits can also be used as an aid to
do measurements or apply operations without losing the state
of the original qubits.

C. Unitary matrix

A unitary matrix U is a matrix that fulfills the following
requirements. UTU = UUT = I with U being the conjugate
transpose of U and I being the identity matrix.

D. Block-encoding

We also work with block-encoding. The basic idea behind
block-encoding of a given matrix A is to build a unitary, that
has A in the upper-left corner.

v=[" ]

The - are used to show that these values of the matrix are
not important to know. When working with matrices, we also
often work with eigenvectors and eigenvalues.

(D
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E. Gates

In quantum computing the gates are unitaries and they are
applied to a quantum state. If we have a given matrix A we
can not apply the unitary without block-encoding the A into
an unitary. This can be seen as putting a box around the matrix
to make it usable for applying the quantum operations. [7]

F. Matrix values

An eigenvector is a non-zero n-vector, which does not
change its direction, even if a n X n matrix is applied to it. It
fulfills the formula Av = Av with A being a n X n matrix, v
being the eigenvector and A being the eigenvalues. Eigenvalues
are the factor by which the eigenvector stretches or shrinks, if
the matrix is applied to it [8, p.68].

Singular values are non-negative real numbers that tell us
how the matrix might stretch or shrink in any direction,
not just one specific direction like with the eigenvector and
eigenvalues. It is computed by taking the square roots of the
eigenvalues of AT A. Since we will work with unitary matrices,
which are a special case of normal matrices, we can also
compute the singular values through the absolute values of
the given matrix U after block-encoding A into it. We can
write U = XYY" with X and Y being unitary matrices and
> being a rectangular diagonal matrix with the singular values
on the diagonal [8, p.79].

G. Phase

In quantum computing, each state can be written with a pos-
sibility of a basis state, |¢)) = a|0) + 8|1) These possibilities
« and S often given as complex numbers. Therefore we can
rewrite o = |a|e’® and |B|e?® in polar form. Then 6, and
63 are the respective global phases. For complex numbers, the
global phase defines the angle of the number in the complex
plane. The relative phase between « and [ is defined as 6
with o = €3 [8, p.93] This phase describes the interference
behavior of the state.

H. Hamiltonians

Hamiltonians are also an important part when working with
QSVT. As we will see later, some of the mentioned algorithms
use Hamiltonians as input parameter. A Hamiltonian is a
special operator, that describes the energy of a system. For
quantum systems that means for any given time ¢ we can
understand how the quantum system behaves and also how
it evolved into this state [8, p.83]. As we will see in section
IV-D, we can use QSVT to simulate for a given Hamiltonian,
how the system might look like at a time ¢, without having to
use and measure a real quantum system.

III. RELATED WORK

As mentioned above, the development of QSVT was pub-
lished in [5]. While analyzing quantum algorithms they re-
alized, that there is an underlying concept these algorithms
follow. Through extracting these concepts they built the frame-
work QSVT. Building on this paper, [2] explained why QSVT
might be seen as a grand unification. They followed the



Input: Oracle U, error tolerance §, precision A < 2/ VN
Output: flagged state |m)

Runtime: O(x/ﬁlog(l/é))

Procedure:

1. Initialize quantum state

2. Apply polynomial approximation

3. Apply QSVT operator to amplify amplitude

4. Measure final state

Algorithm I
ALGORITHM FOR UNSTRUCTURED SEARCH

development of QSVT given by [5] and constructed different
algorithms using this framework. This way they gave a proof
for their suggestion, that QSVT can be seen as grand unifica-
tion of quantum algorithms. This is the main paper we follow.
[7] published a short online article to give a mathematical
overview on how QSVT works, supported by code parts, to
show the functionality. In 2023 [9] gave another simplified
summary of how QSVT works. Both of these references focus
on the functionality of the QSVT, with [7] approaching it from
a mathematical point of view and focusing on the basic idea,
while [9] simplifies some of the pieces of [5] to give a easy
to understand guide of QSVT. As we can see, there are many
different approaches to explain the idea behind QSVT, but
most of them focus on how the algorithm works. With this
paper, we also give a short and easy to understand overview
of how QSVT works, but mainly focus on why this framework
is important and particularly why it can be seen as a grand
unification by closely following the approach by [2]. For
further reading on this topic and more detailed explanations,
the references [2], [5], [7], [9] may be helpful.

IV. ALGORITHMS BUILT WITH QSVT

In this section we take a look at different problems in
quantum computing and how QSVT can be used to built algo-
rithms for them. By examining different applications of QSVT
we address the question why QSVT can be seen as a grand
unification. For each algorithm we give a short introduction
of the problem it solves, followed by a summarization of the
algorithm. In the next step we explain each of the steps of the
algorithm in more detail. For all the following problems and
constructed algorithms we follow the ideas of [2].

A. Search Problem

The first algorithm we look at is the unstructured search.
Here we are searching for a specific element within an
unstructured database. One approach in quantum computing is
Grover’s algorithm, which already has a significant improve-
ment in runtime (O(v/N)) compared to the classical coun-
terpart (O(NN)), which is a quadratic speed up. But Grover’s
algorithm has some shortcomings. Although the algorithm first
starts to increase the probability to find the correct solution,
after an optimal number of iteration it starts to diverge from the
solution again. [2] wanted to solve this problem with QSVT
and hoped for a comparable runtime while at the same time
dealing with the shortcomings. The basic idea behind how
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Input: Hamiltonian H, an o > ||H]||
Output: H has at least one eigenvalue A\ < Ay, — Ay or all
eigenvalues obey A > Ayp + Ay

Runtime: o(ﬁ log(1/¢) log(1 /5))

Procedure:

1. Prepare unitary block encoding of H/«

for i =1to £ do
2. Use QSVT to apply polynomial to state, controlled by ancilla qubit
3. Apply Hadamard gate to ancilla qubit and measure it in computational
basis

end for

4. Measure probability of getting |0):

if closer to 31 then
3 an eigenvalue A < Ay, — A, with high probability

else if closer to 32 then
all eigenvalues obey A > Ay + A with high probability

end if

Algorithm II
ALGORITHM FOR EIGENVALUE THRESHOLD PROBLEM

QSVT constructs an algorithm for the unstructured search is
shown in algorithm I.

As input we use an oracle U that bit-flips an auxiliary qubit,
if the target state |m) is given. We also have an error tolerance
of 4, leading to a success probability of 1 — §, as well as
a precision A < 2/v/N. As output we want the flagged
state |m), which is the state we are searching for. First we
bring the quantum register into a superposition by applying
Hadamard gates to it. Through polynomial approximation -
[2] suggests we use the sign function - we map the amplitude
of our marked state to a value close to 1. This would maximize
the probability to find the correct state. In the third step we
can apply the QSVT operator to amplify the amplitude - this
is similar to Grover’s algorithm. Through the amplification
we can also increase the probability of successfully finding
the correct state. As final step we measure the quantum state.
This measurement gives the wanted result with a probability
of 1 — 4. If the measurement fails, the QSVT application is
repeated. As we saw, this algorithm uses a similar idea to
Grover’s algorithm. The runtime of O(v/N log(1/6)) is close
to the runtime of @(v/N) by Grover’s algorithm. But since
polynomials are designed to provide a monotonic increase,
there is no optimal point after which the probability might
decrease again. Therefore we can overcome the risk of diver-
gence and ensure a higher probability of success.

B. Eigenvalue Threshold Problem

A second problem that can be solved by QSVT according to
[2] is the eigenvalue threshold problem. For a predetermined
threshold we want to know whether there exist eigenvalues
that are below the threshold or if all eigenvalues are above the
threshold. The goal is to create a measurable state, that gives
us this information about the underlying quantum system.
The algorithm to check for these eigenvalues can be seen in
algorithm II.

We start with a Hamiltonian H. For ||[H| < 1 we can
directly block-encode H into a unitary. To be able to deal
with any kind of Hamiltonian, we instead use an « > ||H||
and can block-encode H/« instead. Using the Chernoff bound



Input: Oracle U, eigenvector |u), eigenvalue €27%#, n number of
bits of the phase we want to approximate n + 1 ancilla bits,
error tolerance ¢, precision A
Output: 6 such that |6 — ¢| < %
Runtime: O(nlog(n/J)
Procedure:
1. Initialize parameter 6 = 0
for j do )
2. Construct matrix A;(0) = %(I + e_Q"MUQJ)
3. Apply QSVT to extract bit of ¢
4. Apply Hadamard gate to ancilla qubit and measure it to get result of
current bit of ¢
5. Update 6
end for
6. Repeat for all bits n

Algorithm III
ALGORITHM FOR PHASE ESTIMATION

[10] as well two Bernoulli distributions 31 and (35, we define
an upper bound & - we refer to [2] for the construction - for
the number of repetitions needed. A;; defines the threshold
we want to set for our problem, with A\, /a being used in
the algorithm, since we normalized H with « as well. Ay
is the precision of the eigenvalue A. For each repetition we
first use QSVT to apply a polynomial to the quantum state
|1}, which is controlled by an ancilla qubit in state |[+). We
use this state, so when applying the polynomial in the next
step, we can process the possibilities for both the state |0)
as well as the state |1) simultaneously. The polynomial we
choose approximates a function, that maps the eigenvalues to
1 and -1, depending whether they are smaller or larger than
Atn /. After applying a Hadamard gate to the ancilla qubit,
we can then measure it in the computational basis to collapse
the superposition. The algorithm is constructed in such way,
that the application of the polynomial sets the probabilities of
the states |0) and |1) according to whether the eigenvalues are
above or below the threshold. If we measure |0) the probability
of existence of an eigenvalue that is below our threshold - it
fulfills A < Ay, — Ay - is close to 100%. On the other hand, if
the measurement result in |1), there is a high probability - close
to 100%, that all eigenvalues are above our threshold. The
runtime of O(ﬁcz log(1/¢) log(l/é)) is dependent on the
error tolerance §, the o we used to normalize the Hamiltonian,
the precision Ay as well as an overlap ( between the state and
the low-energy subspace of the Hamiltonian [8].

C. Phase Estimation

The third algorithm we look at is for the phase estimation. In
phase estimation we are given an unitary operator U as well as
an eigenvector |u) with U|u) = €2>™*#|u) and want to calculate
the value of the phase (. It uses a feedback procedure and is
inspired by Kitaev’s algorithm [11]. Algorithm III summarizes
the structure.

The algorithm starts with an oracle U, its eigenvector |u)
with eigenvalue e>™*®, n + 1 ancilla bits for measuring the
results in computational basis, an error tolerance of € as well
as a precision of A. First we initialize a parameter § = 0
which is used to approximate the phase step by step. We also
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prepare the ancilla qubits by applying a Hadamard gate to each
of the qubits. Starting from the last bit of the phase we want to
approximate (j = n—1) we repeat the following steps until we
reach the first bit of the phase (j = 0): We construct a block-
encoding of A;(f) := 1 (I-+e~27U™")_ On this matrix we can
then use QSVT to apply an operator to extract the current bit j
of our phase. By applying a Hadamard gate to the ancilla qubit,
we can then measure the result in the computational basis. We
then update our parameter 6 as follows: Let a be the result
of the measurement and € = 0.6160-..., then the updated @ is
6 = 0.a#,0>. This means we always add the current result to
the front of . By adding it to the front and since we started
with the last bit of the phase, we built our approximation from
back to front, given us the correct result after n steps. Since
we have this # as a parameter in the matrix construction in
step 2, we have a cascading structure, using the current result
in the next iteration. After we reached j = 0 - so after n
iterations - € then stores an approximation of ¢ with an error
of [0 — | < 2L Therefore the more iterations we apply, the
better the approximation..

Phase estimation is an important part of other algorithms
as well, for example as part of Shor’s algorithm [12]. Besides
that it can also be used in solving factoring problems or as
a generalization of the quantum Fourier transform [13]. As
mentioned before, we have a cascading structure in the given
algorithm for phase estimation. A similar structure can be
seen in the binary search. If we look at the quantum Fourier
transform, the inverse version can also be seen as a binary
search, because similar to binary search it halves the search
space by mapping the superpositions back to computational
basis [8, p.222]. With this example we can see a connection
between QSVT and quantum Fourier transform. If we dive
deeper into this connection it leads us to the conclusion, that
QSVT can use its advantage of polynomial approximations
and therefore handle the operations more efficient as well
as handle more complex operations, that quantum Fourier
transform can not execute. Thus QSVT is a generalization of
quantum Fourier transform.

D. Hamiltonian Simulation

Finally we are interested in an algorithm for so called
function-evaluation problems. In these kind of problems we
want to evaluate a function of a matrix. When working with
QSVT we achieve this by applying a polynomial. As [2] men-
tions, these problems could be solved with quantum eigenvalue
transformation, but we want to use QSVT to show that the
framework is also applicable here. The Hamiltonian simulation
is a prominent example for these kind of problems. Given
a Hamiltonian, the algorithm calculates the time evolution
and its operator e~ */'* for a Hamiltonian H as well as the
time ¢. This means in Hamiltonian simulation we simulate
how the quantum system evolves over time, given an energy
operator (Hamiltonian) [8, p.83]. The algorithm IV shows
the process of calculating or rather approximating the time
evolution operator.



Input: Hamiltonian H, desired time ¢, an error tolerance €, and
a> | H|
Output: block-encoded e-approximation of e~

. log(14-¢€)
Runtime: O(a t 4+ —28r)
] IOg(e'*‘lOi(ﬁ/\é))

iHt

Procedure:

1. Prepare unitary block encoding of H/«
2. Apply QSVT twice, using polynomials
3. Use results to run circuit in Figure 5

Algorithm IV
ALGORITHM FOR HAMILTONIAN SIMULATION

We start with a given Hamiltonian as well as the time ¢ at
which we want to know how the system has changed from the
beginning up to ¢. This will be measured through the time evo-
lution operator e~*#* of this Hamiltonian. To be able to apply
QSVT later on, we need to block-encode the Hamiltonian. We
have already seen in section IV-B how to block-encoded H
depending whether | H|| < 1 is fulfilled or not. As mentioned
by [2] this leads to a small drawback, because we need to have
some prior knowledge about H to be able to calculate the norm
|H|| < 1. But since there is a large class of Hamiltonians
[4] with well known structures, for which block-encoding
already exists, we can estimate the form of H with minor
to no knowledge and apply a corresponding block-encoding,
therefore making the drawback a minor problem. After we
have a block-encoded unitary, we can then use QSVT to apply
polynomial approximations to it. The operator we want to
calculate is the exponential function, which does not have a
definite parity. Therefore we can not just apply the Poly(a)
from the QSVT, because for indefinite parities the theorem
used to construct the polynomials for QSVT is not fulfilled.
If we use polynomial approximations of cos(xt) as well as
sin(xt) we can work around this problem, because these two
approximations have definite parities and are also connected to
the exponential function (because e ~*** = cos(zt) —isin(xt)).
Therefore if we use these approximations, we can later rebuild
our operator. This is done by inserting the results given by
the approximations into the quantum circuit given in figure
5. Compared to other algorithms for Hamiltonian simulation,
such as Hamiltonian simulation by qubitization as developed
by [4], we can see that runtime improves significantly with
this approach.

Another interesting example for function-evaluation prob-
lems is the matrix inversion. Given a Matrix A we want to

)

~

[1o) cos (Ht) | | —isin (Ht)

Fig. 5. Circuit created by Martyn et al. for use in Hamiltonian simulation
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approximate its inverse A~!. For this example we refer to [2].

V. GRAND UNIFICATION

After exploring the construction of some algorithms for
different problems with QSVT, we want to answer the ques-
tion, if QSVT can be seen as grand unification. During the
construction of the phase estimation algorithm we already
heard of two different algorithms, which have a connection
to this newly built algorithm: Shor’s algorithm as well as
the Quantum Fourier Transform. Since phase estimation is
part of Shor’s algorithm, we can therefore use the advantages
of QSVT in this already existing and widely used algorithm
as well. The quantum Fourier transform on the other hand
shows how QSVT can also be used to generalize some
algorithms. Phase estimation is also a great example to show
how powerful an algorithm constructed with QSVT is. Besides
the connections just mentioned, it also has a wide field of
applications like factoring or robust phase estimation. The
same goes for the idea behind Hamiltonian simulation. We
already mentioned that Hamiltonian simulation is a function-
evaluation problem. We can use the approach in constructing
this algorithm for other function-evaluation problems as well,
therefore being able to construct algorithms for a big set of
problems. [5] also mentions algorithms for quantum linear
systems as well as quantum walks. These are already strong
indicators that QSVT can be seen as a grand unification. In the
algorithms mentioned in this paper as well as other algorithms
constructed by QSVT we can often see an improvement over
already existing algorithms. It can construct algorithms that not
only have the possibility to improve the runtime and therefore
the efficiency, but also generalize existing ideas, making
them applicable to wider problems. One example for this
is the Harrow-Hassidim-Lloyd algorithm for linear systems
[14], which could not be applied in general, for example if
there was no access to the matrix’s eigenvalues. QSVT can
offer a more general algorithm through applying polynomial
approximation. It is also important to mention once more, that
[5] developed QSVT by searching for an underlying concept
behind existing algorithms. Therefore QSVT being a grand
unification was already a component of the framework from
the start.

VI. CONCLUSION AND FUTURE WORK

We have seen different use cases, where QSVT can be
useful to construct algorithms for solving specific problems.
Although it can sometimes reach a slightly worse perfor-
mance than already existing quantum computing approaches
- like when compared to Grover’s quantum algorithm for the
unstructured search - it overall offers many advantages that
make QSVT a powerful tool. The biggest advantage is its
wide spread usability for all kinds of problems. By having
one framework that can handle these problems, it is not only
possible to improve already existing approaches but it can also
make it easier to tackle problems, for which no algorithm
exists yet. It also gives a deeper understanding on how these
algorithms work and how future algorithms could look like.



With its widespread usability and the possibility to improve
and generalize existing ideas, QSVT can indeed be seen as
a grand unification of quantum algorithms. According to [2],
QSVT also has some caveat in the use, so future work can also
focus on how to improve QSVT to reduce these difficulties.
One of the biggest caveats is the requirement of block-
encoding. QSVT opened many ways to expand into the world
of quantum computation and solving problems using quantum
algorithms. Since quantum computation is a promising but
also complex area, in future works we want to look at new
algorithms constructed with the help of QSVT as well as
developments in QSVT itself and simplify these ideas as well.
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Abstract—Quantum computing has traditionally been framed
within the unitary circuit model, where information is processed
through reversible logic gates. However, the Measurement-Based
Quantum Computing (MBQC) paradigm, or the One-Way Quan-
tum Computer, offers a fundamental shift: computation is driven
by irreversible single-qubit measurements performed on a highly
entangled resource known as a cluster state. This paper presents
a didactic derivation of how universal quantum computation is
achieved solely through cluster states and measurements. We
demonstrate how operations in the quantum circuit model map to
specific measurement patterns, with the aim of making the mech-
anisms of MBQC more accessible to beginners. Furthermore, we
discuss the critical role of classical feed-forward mechanisms in
correcting the inherent randomness of quantum measurements,
thereby ensuring deterministic computation.

Index Terms—Measurement-Based Quantum Computing
(MBQC), Cluster States, One-Way Quantum Computer, Univer-
sal Quantum Computation.

I. INTRODUCTION

Since Richard Feynman’s initial proposal of quantum simu-
lation in the 1980s [7], the primary mental model for quantum
computation has been the “Quantum Circuit Model” [8]. In
this framework, isolated qubits are initialized in a fiducial
state (usually |00...0)), manipulated by a temporal sequence
of unitary logic gates (U1, Us,...,U,), and finally measured
to extract the result. This model is intuitive because it mirrors
the architecture of classical logic gates: wires represent qubits,
and time flows from left to right.

However, in 2001, Raussendorf and Briegel proposed a rad-
ically different approach: the “One-Way Quantum Computer”
[1]. In this model, the difficulty of the computation is front-
loaded into the creation of a massive, multi-particle entangled
resource known as a Cluster State [9]. Once this state is
prepared, the computation proceeds solely by performing
single-qubit measurements.

While the theoretical underpinnings of this model were
rigorously detailed in foundational works using the stabilizer
formalism [2], these primary sources are often highly tech-
nical and dense. Conversely, Raussendorf has also produced
pedagogical video tutorials [5] that sketch the intuition behind
universality. However, while these resources introduce sim-
plified measurement patterns, such as the alternative CNOT
implementation discussed in this work, they often omit rigor-
ous step-by-step derivations, delegating them as exercises for
students.

49

Consequently, a gap remains for the intermediate learner. To
address this, this paper provides a self-contained, pedagogical
derivation of universality tailored for a broad academic audi-
ence. We detail derivations typically omitted in abbreviated
presentations, like the ones by Raussendorf himself [5], to
ensure a complete understanding. Specifically, we map the
temporal logic of the circuit model to the spatial geometry
of the cluster state, clarifying information propagation for
the non-specialist. Prioritizing visual and geometric intuition
over the stabilizer formalism, we demonstrate how ’wires’
and ’gates’ are carved into the entanglement substrate. By
synthesizing rotations and CNOT gate derivations into a uni-
fied narrative, we connect standard quantum algorithms with
measurement-based implementations.

To this end, we structure our derivation as follows: First,
we introduce the Cluster State and the Stabilizer Formalism
in Sec. II. In Sec. III, we rigorously derive the components
of a universal gate set: beginning with state propagation (the
’Quantum Wire’), followed by arbitrary single-qubit rotations,
the CNOT gate, and the protocol for removing qubits via
Z-measurements. Throughout these derivations, we highlight
the necessity of classical feed-forward mechanisms to ensure
deterministic computation. Finally, in Sec. IV, we discuss
the conceptual implications of this model, specifically the
translation of temporal logic into spatial resources.

II. BACKGROUND: THE SUBSTRATE OF COMPUTATION

To understand how a sequence of measurements can drive a
deterministic computation, we must first characterize the phys-
ical resource being measured. Unlike the circuit model, where
the resource is time, here the resource is the entanglement
substrate itself.

A. Cluster States and Graph States

A Cluster State, a two-dimensional lattice, is a specific
instance of a graph state, mathematically described by a graph
G = (V,E), where the vertices V' represent qubits and the
edges E represent Ising-type entanglement interactions (in this
case, it is just C'Z interactions between all adjacent qubits) [1].

The physical construction of a cluster state follows a precise,
two-step protocol that separates the difficulty of entanglement
generation from the logic of the computation:



1) Initialization: All qubits in the lattice are initialized in
the superposition state |[+) = %(|0> +11)). This creates
a uniform superposition across the entire register.

2) Entanglement: A Controlled-Phase (CZ) gate is ap-
plied between all pairs of qubits connected by an edge
in the graph. The C'Z gate applies a phase of —1 to the
joint state only if both qubits are in the state |1).

Fig. 1 shows the cluster state. The blue circles are the
initialized qubits in the |+) state and the line connecting
those dots represents the C'Z interactions. A crucial feature of
this construction is that all C'Z gates commute. Consequently,
the order of their application is irrelevant, allowing for the
massive, simultaneous generation of entanglement across the
entire lattice in a single time step [5].
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Fig. 1. The 2D cluster state lattice. Vertices represent qubits initialized in |+),
and edges represent C'Z entanglement interactions. The highlighted overlay
illustrates the stabilizer structure (see Sec. II-B), where the operator K,
consists of a Pauli-X on the central qubit (red) and Pauli-Z operators on
its neighbors (black) [5].

B. The Stabilizer Formalism

While the physical construction is intuitive, the computa-
tional properties of the cluster state |¢)c are best described
using the stabilizer formalism [10]. Instead of writing out the
full wavefunction, this formalism defines the state by a set
of “rules” or stable properties that it must satisfy. Specifically,
the cluster state is defined as the unique state where measuring
the following operators (illustrated by the colored overlay in
Fig. 1) always yields the value +1:

Ko=Xo Q 2 )

beEN (a)

Where a is a specific qubit, N(a) denotes the set of its
connected neighbors in the lattice, and X and Z are the
standard Pauli matrices.

C. Teleportation as a Primitive

The fundamental engine of MBQC is a technique known as
”One-Bit Teleportation” [11]. Unlike the circuit model, where
a logical state physically resides on a specific wire and evolves
over time, in MBQC, the logical state is teleported from one
physical qubit to its neighbor via measurement [1].

To illustrate this, consider the simplest possible cluster state:
two qubits connected by a C'Z interaction. Let qubit 1 carry
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an arbitrary logical state |¢)) and qubit 2 be initialized in |+).
The total state is |¥) = CZ (1)1 @ |+)2).

If we measure qubit 1 in the X-basis, it is "consumed” and
removed from the cluster. Through the phenomenon of gate
teleportation, the quantum information |¢) is not destroyed;
rather, it is transferred to qubit 2, subjected to a Hadamard
operation H.

D. The Necessity of Feed-Forward (Deterministic Correction)

However, because quantum measurements are inherently
probabilistic, the transfer is not always identical. Referring
back to the example in Sec. II-C, the measurement outcome
s (where s = 0 for outcome +1 and s = 1 for outcome —1)
introduces a specific Pauli byproduct: if s = 0, the state on
qubit 2 is Hly); if s = 1, the state on qubit 2 is X H|¢)).
We must record this outcome and “feed it forward” to correct
future qubits [2].

E. Gate Application via Basis Rotation

The teleportation mechanism serves as more than just a
wire. By changing the measurement basis of qubit 1 from
the standard X-basis to a rotated basis in the X-Y plane
(defined by an angle ¢), we modify the unitary transformation
applied to the teleported state. Instead of a simple Hadamard,
the state undergoes a rotation R, (¢) followed by H. Thus, in
the One-Way Computer, state transfer (teleportation) and gate
application are the exact same physical process [2].

III. UNIVERSALITY PROOF

To prove that the Measurement-Based Quantum Computer
(MBQC) is a universal model, we must demonstrate its ability
to simulate any arbitrary quantum circuit. Universality is
achieved if a model can implement a set of gates capable of
approximating any unitary operation with arbitrary precision
[6]. Typically, this set consists of:

1) Arbitrary single-qubit rotations.
2) A single two-qubit entangling gate (the CNOT gate).

However, unlike the circuit model where these gates are
applied to static qubits over time, MBQC “carves” these
operations out of the cluster state. Therefore, to establish uni-
versality in the One-Way model, we must at least demonstrate
how the cluster state supports the following five structural
primitives:

1) State Propagation (The Quantum Wire): Unlike the
circuit model, where a wire represents a qubit evolving
in time, in MBQC the physical qubits are stationary
resources. To create a logical “wire,” we must transport
the quantum information from one physical site to
another. This is achieved via the “One-Bit Teleportation”
mechanism, effectively simulating a wire by propagating
the state across the cluster.

Arbitrary Single-Qubit Rotations: We must show that
by altering the basis of the measurement (specifically
measuring in the X-Y plane at an angle ¢), we can
induce specific unitary rotations on the teleported state.

2)



3) Two-Qubit Entanglement (CNOT): We must derive
a geometric measurement pattern that interacts two
parallel “logical wires” within the 2D cluster lattice to
reproduce the logic of a CNOT gate.

Removing Qubits from the Cluster: A generic 2D
cluster state acts as a blank canvas. We require a method
to delete unnecessary qubits to isolate specific logical
paths. This is achieved by measuring unwanted qubits
in the Z-basis, effectively removing them from the graph
entanglement.

Deterministic Correction (Feed-Forward): Measure-
ments are inherently probabilistic. To ensure deter-
ministic computation, we must prove that “unwanted”
measurement outcomes (Pauli errors) can be corrected
by adapting the measurement angles of future qubits
(classical feed-forward).

4)

5)

In this section, most of our derivations for the Universality
Proof stem from Raussendorf’s YouTube lecture [5], unless
stated otherwise.

A. The Quantum Wire (Identity Gates)

To simplify the proof of state propagation, we restrict our
analysis to a one-dimensional three-qubit cluster state. We
demonstrate the validity of the quantum wire by performing
a series of circuit equivalence transformations step-by-step,
mapping the physical realization in Fig. 2 to the simplified
logical circuit in Fig. 5.

We begin with the canonical cluster implementation de-
picted in Fig. 2. Consistent with the entanglement protocol
defined in Section II, C'Z gates are applied sequentially to
adjacent qubit pairs (1,2) and (2,3). We define the register
such that qubit 1 represents the logical input initialized in an
arbitrary state |¢), while the subsequent qubits are initialized
in the superposition state |+). The protocol concludes with X -
basis measurements on qubits 1 and 2. The collective effect of
this circuit is the teleportation of the input state |¢)) from the
first to the third qubit. This also means that measuring qubit
1 & 2 in the X-basis moves the arbitrary state |¢)) from qubit
1 to qubit 3 (which is why it is called the quantum wire).

+)

X

) ————]
X

(=]

) ————

Fig. 2. The canonical cluster implementation (physical quantum wire) [5]

To verify this teleportation, we first transform Fig. 2 into
the equivalent circuit shown in Fig. 3. This is achieved by
inserting two consecutive Hadamard gates on the second qubit,
positioned between the two C'Z gates. Since the Hadamard
gate is self-inverse (H? = I), this is essentially an identity
operation which makes both circuits mathematically identical.
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X
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Fig. 3. Equivalent transformation from Fig. 2 by adding two Hadamards as
an Identity gate [5]

The transformation from Fig. 3 to Fig. 4 requires propagat-
ing the final X -basis measurements on qubits 1 and 2 logically
“forward” through the circuit. Specifically, the measurement
on the first qubit must commute through the C'Z gate, while
the measurement on the second qubit must traverse both the
CZ gate and the Hadamard gate. While the validity of these
transformations can be rigorously proven via the stabilizer
formalism as proposed by Raussendorf in his video [5],
we omit the exhaustive derivation here. Instead, we verify
these commutations using standard operator transformation
tables, such as those provided in the documentation from the
Stim [4] repository. This approach leverages the Heisenberg
picture of quantum mechanics [12]. Unlike the more common
Schrodinger picture which tracks the temporal evolution of the
state vector (e.g., |0) — |+)), the Heisenberg picture tracks
how operators evolve as they pass through unitary gates. By
applying the Pauli frame changes listed in Table I and Table
II, we effectively simulate this operator evolution, confirming
that the circuit in Fig. 3 is mathematically equivalent to Fig.
4.

YASYA X®X

[+) —' D—

Fig. 4. Circuit with propagated measurements (equivalent transformation of
Fig. 3) [5]

The bottom left part of Fig. 4 that includes both |+) of
qubit 2 and 3, the C'Z gate, as well as the Hadamard gate
on qubit 2, makes up a Bell state, specifically the |®*) state.
The subsequent parity measurements, Z ® Z and X ® X,
are mathematically equivalent to a complete Bell measure-
ment. While Raussendorf’s video [S] omits the mathematical
derivation, this equivalence arises because the Pauli product
operators Z ® Z and X ® X commute ([Z® Z,X ® X] = 0)
and share the four Bell states as their unique simultaneous
eigenstates. Specifically, the Z ® Z measurement extracts the
“bit parity” (distinguishing the even-parity subspace {|®¥)}
from the odd-parity subspace {|¥*)}), while the X ® X
measurement extracts the “phase parity” (distinguishing the
superpositions with positive phase {|®T),|¥T)} from those
with negative phase {|®7),|¥~)}). Together, the joint out-



comes of these two observables yield the two classical bits
necessary to uniquely identify the Bell state. Consequently,
Fig. 4 is mathematically equivalent to Fig. 5, which depicts the
standard quantum teleportation protocol [3]. The Hadamard
gate on qubit 2 and C'Z gate on qubit 1 & 2 can be ignored
after the Bell measurement for this purpose.

With this teleportation protocol, we can easily see that this
circuit teleports the arbitrary qubit state |¢)) from qubit 1 to
qubit 3, thereby forming the aforementioned ”Quantum Wire”.

) —

Bell
meas.

|Bell)

Fig. 5. Standard quantum teleportation protocol (equivalent transformation
of Fig. 4). The H gate and the CZ gate after the Bell measurement can be
ignored in this context. [5]

However, a more intuitive interpretation is that Fig. 13 cor-
responds to the top portion of Fig. 2. As derived in Sec. III-C,
this component implements a Hadamard gate. Consequently,
Fig. 2 effectively applies the Hadamard gate twice, resulting
in an Identity gate.

Input Pauli Operator

Output Pauli Operator

X

Z

Z

X

TA

LET

STABILIZER GENERATORS FOR THE H-GATE [4]

Input Pauli Operator | Output Pauli Operator
X_ XZ
Z_ Z_
X 7X
Z 7
TABLE I

STABILIZER GENERATORS FOR THE CZ-GATE [4]

B. Arbitrary Single-Qubit Rotations

We now progress to step two of the universality proof and
discuss the implementation of single-qubit rotations in MBQC.
Fig. 6 has a familiar structure of the previous protocol.

A

) —4—]

Al
]

) ———

+)

Fig. 6. [5]

This is like the identity gate but what is changed now are
the measurements. Previously we are looking at measurement
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in the X-basis, but we are now looking at more general one-
qubit measurement. In this structure, we can see familiar sub-
structures, which are boxed in red in Fig. 7.

A
[¥) (]

A/
) ld
+)

Fig. 7. [5]

Let’s look at the top structure first, and now consider the
observable A = Ul XU,, with U, = exp(iaZ). Recall that
arbitrary rotation gates are defined as:

Rp(0) = e8P = cos (g) I—i-sin <Z) P, Pe{X,Y,Z}

Therefore, U, simply means rotation around the Z-axis. With
these, the top structure will be as illustrated in Fig. 8, which
is also mathematically equivalent to Fig. 9.

UIXU.
) —+—~]

|+) —e

) —s

Fig. 9. Equivalent transformation of Fig. 8 [5]
X

U.|v) —1

) —

Fig. 10. Equivalent transformation of Fig. 9 [5]

Because the rotation gate U, commutes with the C'Z gate,
it can then be re-expressed as the structure in Fig. 10. This
configuration is termed ’half-teleportation’ because it consti-
tutes a portion of the full teleportation circuit shown in Fig.
2. The resulting state transformation is described by:

[¥) = [¢') = HZ°U. )

Functionally, this circuit implements a Hadamard gate fol-
lowed by a conditional Pauli-Z correction determined by the
X-basis measurement outcome s. The correction is applied
only when the negative eigenvalue (—1) is measured; it is
omitted for the positive eigenvalue (+41).



We can then do the same for the bottom structure of Fig.
7 by taking the entire state of |¢') = HZ*U, |¢)) from above
and treat it as the input for the bottom structure. With the same
logic, combining both “half-teleportation” yields:

W) = [v") = (HZ*'UL)(HZU,) |¢) = HZ* ULHZ*U,, |4))

Since Hadamard gates annihilate pair-wise (self-inverse), we
can simplify it by bringing the first Hadamard forward in time
to the Hadamard in the middle. By doing so, the Z s' and U/
are then conjugated into X ' and U. (refer to Table I again
for this conjugation). Therefore, the combination of two “half-
teleportation” then yields:

W) — [y = X ULZ°U, |¢)

This derivation is significant, as it demonstrates the capability
to perform rotations about both the Z and the X-axis. Intu-
itively, just as walking along lines of longitude and latitude
allows one to reach any destination on Earth, alternating
rotations around these orthogonal axes allows us to navigate
the entire surface of the Bloch sphere. Formally, this creates a
universal set for single-qubit control, as any arbitrary unitary
gate can be synthesized by a sequence of these rotations (e.g.,
via Z-X-Z decomposition [13]).

C. CNOT Gate

As mentioned in Section III, the implementation of CNOT
gate is inseparable from achieving universality. Raussendorf
provided two alternatives for realising it on the cluster state.
The first alternative, as illustrated in Fig. 11, is the original
implementation provided by Raussendorf that involves mea-
surement in the X- and the Y-basis [2]. The second alternative,
as illustrated in Fig. 12, is the easier implementation of
CNOT from Raussendorf’s tutorial on YouTube [5]. Although
Raussendorf has provided the proof for the first alternative in
his paper [2], the proof for the second alternative is not shown,
but rather it is left as an exercise for students. Here, we prove,
step by step, that it implements a CNOT gate.

1 2 3 4 5 6 7

el 11| 1@
M :

target X X xX XD

9 10 11 12 13 14 15

Fig. 11. Realisation of CNOT-gate from Raussendorf’s paper [2]

Recall that in the implementation of the arbitrary single-
qubit rotation protocol in subsection III-B, we can implement
any qubit rotation using one of the sub-structures (boxed in
red) as illustrated in Fig. 7.
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1 C2 €3 C4 Cout
control X X X X
X b
X by
t3 X X X 5
target 2}
X X x [
tq to te  tout

Fig. 12. Alternative realisation of CNOT-gate from Raussendorf’s YouTube
tutorial [5]

X
v ——~]
) —
Fig. 13.

Let’s extract one of the sub-structures and change the
measurement basis to the X-basis, as illustrated in Fig. 13.
The input qubit 1 has some arbitrary state 1)) = o |0) + 5 |1),
and qubit 2 is prepared in the plus state |+). After the CZ
gate, the total state will become the following:

[Wi2) = |0)y [+); + 8111 [=),

Now, we measure qubit 1 in the X-basis. Since the eigenvec-
tors of Pauli-X are |[+) & |—), we project qubit 1 onto these
vectors. In an ideal case, when the measurement outcome is
+1, the projection is as follows:

[W12) = a(+[0) [+) + B+ 1) | =),
(Recall that (+]0) = L and (+[1) = L)

V2 2
1
= E(a [+)g + B1=)2)
Let’s look at the resulting state on qubit 2:
al+) +8[-)
Substituting definitions of |+) and |—):
0) +11) 100 =11
= +
RV IR
1
= —|(a+ ) |0) + (a — 1
ﬂ[( £)10) + (a = B) [1)]

Note that this is exactly H |¢)). So measuring in X-basis
essentially performs a Hadamard gate if the measurement
outcome is +1. This clearly demonstrates that the state propa-
gation and computation is done simultaneously in MBQC (in
this case, performing a Hadamard gate and transmitting the
logical state to qubit 2 by a single measurement in the X-
basis). What happens then, if the measurement result is —1?



By performing the calculation (analogous to the derivation
above), one concludes that the state of the qubit 2 would be
al+) — B]—). We would have to do a Pauli-X correction
on that state to correct the result, which falls under the
”Deterministic Correction (Feed-Forward)” part of Section
IIT but we will not perform rigorous proof for this in the scope
of this paper.

Since two Hadamards implement an Identity gate, we can
treat even numbers of X-measurements as Identity gates (quan-
tum wire) and odd numbers as Hadamard gates. Note that
by stacking the structure of Fig. 13, we get the exact same
structure as depicted in Fig. 2 in subsection III-A (the quantum
wire proof), which just acts as an Identity gate.

Using this logic, we can see that in Fig. 12, the control
row of qubits (c1, ..., ¢4) has even number of X-measurements
that essentially implements an Identity gate. The two “bridge”
qubits (b1, bs) that connects the control row to the target row
also effectively implements an Identity gate.

Focusing now on the target row, from the qubit t; to ts,
these measurements essentially applies an initial Hadamard.
Now the logical qubit is sitting at ¢4 and the bridge connects
t4 to cs. Since the connection of any adjacent qubits in the
cluster states are defined as CZ, this essentially applies a CZ
gate between the control and the target. Now, to move the
state from ¢4 to the output, we measure in X-basis for another
3 times, and this again applies another Hadamard. Recall that
”sandwiching” a Z-gate between two Hadamards turns it into
an X-gate, now we can see that the whole circuit is essentially
just a CNOT-gate which can be seen as:

Circvit=(I® H)-CZ-(I® H) =CNOT

D. Removing Qubits from the Cluster

As mentioned previously, a generic 2D cluster state acts as a
blank canvas. Therefore, We need a way to delete unnecessary
qubits to isolate specific logical paths. This is accomplished
by measuring the unnecessary qubits in the Z-basis, which
effectively eliminates them from the graph entanglement.

Raussendorf has trivially proven how qubits can be removed
from the cluster states with Z-measurement [5]. For this, let’s
look at the trivial 1D 3-qubit cluster states again, as illustrated
in Fig. 14. The goal of this proof is to show that measuring the
bottom-most qubit in the Z-basis (as shown in the LHS) yields
a circuit ’equivalent’ to the RHS, provided the measurement
outcome is +1.

12

Fig. 14. [5]

Let’s consider the circuit in Fig. 15. We assume that the
outcome obtained in the Z-measurement on qubit 3 is |0),
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which is the eigenstate of Pauli-Z with positive eigenvalue
(+1).

) ————

+)

[+) ————10) (0|

Fig. 15. [5]

Since the measurement commutes with the C'Z gate on
qubit pair (2, 3), we can then propagate it backwards in time
as shown in Fig. 16.

) ——

+)

[-5)10){0] ——e—
Fig. 16. [5]

It is then equivalent to Fig. 17, since the state |+) |0) (0] is
nothing more than just the state |0).

) ——

+)
0)

Fig. 17. [5]

Furthermore, we also know that if an input |0) is involved
in a C'Z gate, then the gate does nothing, because it will only
flip the phase when both qubits have the state |1). Therefore,
we can simply remove the C'Z gate, and as you can see in
Fig. 18, the third qubit is effectively removed from the cluster
state.

Fig. 18. [5]

However, this is only true when the measurement result in
the Z-basis has positive eigenvalue (|0)), which is why we put
quotation marks between the word ’equivalent’ earlier. What
Raussendorf didn’t show in his video [5], however, is what
happens when the measurement result has negative eigenvalue
(|1)). We’ll show it here step-by-step.

Referring to Fig. 15 again, our start state looks like the
following:

[Wi23) = [+)1[+)2 [4)3

which is entangled by C'Z15 and C'Z53. Let’s write out the 8
terms with the coefficients ignored. A term only gets a sign
flip if a pair of neighbors are both |1). Those 8 terms are:

+1000) , 4 |001) , +]010) , — |011),



+]100) ,+]101) , — [110) , +[111)

If the measurement outcome is |1) on qubit 3, then the whole
state collapses into a state with only these 4 following terms:

+1]001), — |011),+[101) , + |111)
And since every term ends in |1);, we can pull it out:
[W123) = (|00) — [01) + [10) 4 [11))12 ® [1)5

We can clearly see that qubit 3 is now fully separated, therefore
the wire between qubit 2 and 3 is cut. Now the question is:
what happens to the neighbouring qubit 2? To answer this,
let’s look at the original cluster state with just qubit 1 & 2.

)1 140y 225 [00) +[01) + [10) — |11)

Now compare this with the previous result of (]00) — |01) +
[10) +]11))12, we can see that qubit 2 has effectively received
a Z-gate, which needs to be corrected as mentioned in the
”Deterministic Correction (Feed-Forward)” part of Section
111

In short, if the measurement result is |0), then the qubit
is effectively removed from the cluster state without any side
effects. However, if the measurement results in |1), the qubit
will still be removed from the cluster state, but all of its
directly neighboring qubits will receive a Z-gate operation,
which needs to be corrected.

IV. DISCUSSION
A. Scope and Limitations

As this paper is intended to serve as a first point of entry
for readers with basic knowledge of quantum computing, our
primary focus has been establishing the physical realization
of a universal gate set. By rigorously deriving the quantum
wire, arbitrary single-qubit rotations, and the CNOT gate, we
have confirmed that the cluster state possesses the necessary
computational power to simulate any unitary evolution.

Consequently, we omit the formal derivation of gate compo-
sition and the global Pauli-tracking algorithm (feed-forward).
However, the critical importance of deterministic correction
was explicitly demonstrated throughout our derivations in Sec-
tion III. We established that measurement outcomes are prob-
abilistic and can introduce specific Pauli errors, such as the
Z-correction required during “half-teleportation” or the cor-
rections necessitated by removing qubits via Z-measurements.
While the full classical control logic is outside the scope of
this work, we have shown locally when these corrections must
occur to ensure the computation remains deterministic.

B. Spatial vs. Temporal Resources

The derivations presented in Section III highlight a fun-
damental conceptual shift: the trade-off between time and
space. In the standard circuit model, complex algorithms
are executed by applying gates sequentially over time to a
fixed number of qubits. In contrast, MBQC “front-loads” the
computational difficulty into the creation of the cluster state.
Complexity is no longer defined by circuit depth (time), but
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by the spatial dimensions of the cluster state resource. For
instance, our derivation of the “Quantum Wire” reveals that
simply maintaining a logical qubit in memory requires the
continuous consumption of physical entanglement, effectively
converting the “time” resource of the circuit model into the
”space” resource of the cluster lattice.

V. CONCLUSION

In this work, we have presented a comprehensive, pedagogi-
cal derivation of universality in Measurement-Based Quantum
Computing. By explicitly expanding upon the abbreviated pre-
sentations found in resources like Raussendorf’s tutorials [5],
we have supplied the rigorous step-by-step proofs necessary
for a complete understanding. This detailed reconstruction
demonstrated that the temporal logic of the quantum circuit
model is not merely analogous, but mathematically equivalent
to spatial measurement patterns on a generic 2D cluster state.

Technically, we established that “One-Bit Teleportation”
serves as the primary engine of information transport, allowing
logical qubits to propagate through the lattice. We further
proved that by rotating the measurement basis, we can enact
arbitrary unitary rotations simultaneously with this propa-
gation. Finally, by adopting one of Raussendorf’s proposed
measurement structures and rigorously deriving its operation,
we confirmed that a CNOT gate can indeed be implemented,
completing the universal gate set.

The conceptual significance of this derivation lies in how
these operations are realized. We observed that “gates” in
this model are not external operations applied to the system,
but are carved out of the entanglement substrate itself. This
proves that the irreversible nature of measurement does not
limit computational power; rather, it is the very mechanism
that drives information processing.
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